1,243
Views
26
CrossRef citations to date
0
Altmetric
Research Paper

Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA

&
Pages 916-926 | Received 13 Apr 2016, Accepted 28 Jun 2016, Published online: 05 Aug 2016

References

  • Brantl S. Bacterial chromosome-encoded small regulatory RNAs. Future Microbiol 2009; 4:85-103; PMID:19207102; http://dx.doi.org/10.2217/17460913.4.1.85
  • Brantl S. Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. Future Microbiol 2012; 7:853-71; PMID:22827307; http://dx.doi.org/10.2217/fmb.12.59
  • Brantl S, Brückner R. Small regulatory RNAs from low-GC Gram-positive bacteria. RNA Biol 2014; 11:443-56; PMID:24576839; http://dx.doi.org/10.4161/rna.28036
  • Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 2007; 10:102-9; PMID:17387036; http://dx.doi.org/10.1016/j.mib.2007.03.012
  • Morfeldt E, Taylor D, von Gabain A, Arvidson S. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 1995; 14:4569-77; PMID:7556100
  • Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, et al. Staphylococcus aureus RNAIII coordinately represses synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 2007; 21:1353-66; PMID:17545468; http://dx.doi.org/10.1101/gad.423507
  • Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, Vandenesch F, Romby P. Staphylococcus aureus RNAIII binds to two distant regions of coa RNA to arrest translation and promote RNA degradation. PLoS Pathog 2010; 6:1000809; PMID:20300607; http://dx.doi.org/10.1371/journal.ppat.1000809
  • Fechter P, Caldelari I, Lioliou E, Romby P. Novel aspects of RNA regulation in Staphylococcus aureus. FEBS Lett 2014; 588:2523-9; PMID:24873876; http://dx.doi.org/10.1016/j.febslet.2014.05.037
  • Mangold M, Siller M, Roppenser B, Vlamincks BJ, Penfound TA, Klein R, Novak R, Novick RP, Charpentier E. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol 2004; 53:1515-27; PMID:15387826
  • Wadler CS, Vanderpool CK. A dual function for a bacterial small RNA: SgrS performs base-pairing dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci USA 2007; 104:20454-9; PMID:18042713; http://dx.doi.org/10.1073/pnas.0708102104
  • Kaito C, Saito Y, Ikuo M, Omae Y, Mao H, Nagano G, Fujiyuki T, Numata S, Han X, Obata K, et al. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathog 2013; 9:e1003269; PMID:23592990; http://dx.doi.org/10.1371/journal.ppat.1003269
  • Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayasi H. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol. Microbiol 2002; 43:257-65
  • Roberts SA, Scott JR. RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Mol. Microbiol 2007; 66:1506-22; PMID:18005100
  • Berghoff B, Glaeser J, Sharma CM, Vogel J, Klug G. Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides. Mol. Microbiol 2009; 74:1497-512
  • Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS, Backofen R, Williams P, Hüttenhofer A, Haas D, Bläsi U. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol. Microbiol 2011; 80:868-85; PMID:21375594; http://dx.doi.org/10.1111/j.1365-2958.2011.07620.x
  • Licht A, Preis S, Brantl S. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in B. subtilis. Mol. Microbiol 2005; 58:189-206; PMID:16164558
  • Heidrich N, Chinali A, Gerth U, Brantl S. The small untranslated RNA SR1 from the B. subtilis genome is involved in the regulation of arginine catabolism. Mol. Microbiol 2006; 62:520-36; PMID:17020585
  • Heidrich N, Moll I, Brantl S. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res 2007; 35:4331-46; PMID:17576690; http://dx.doi.org/10.1093/nar/gkm439
  • Licht A, Brantl S. (2006) Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. J Mol Biol 2006; 364:434-48; PMID:17011578; http://dx.doi.org/10.1016/j.jmb.2006.09.021
  • Licht A, Golbik R, Brantl S. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. J Mol Biol 2008; 380:17-30; PMID:18511073; http://dx.doi.org/10.1016/j.jmb.2008.05.002
  • Licht A, Brantl S. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanism at different promoters. J Biol Chem 2009; 284:30032-8; PMID:19726675; http://dx.doi.org/10.1074/jbc.M109.033076
  • Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S. A dual-function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. Mol Microbiol 2010; 76:990-1009; PMID:20444087; http://dx.doi.org/10.1111/j.1365-2958.2010.07158.x
  • Gimpel M, Preis H, Barth E, Gramzow L, Brantl S. SR1 – a small RNA with two remarkably conserved functions. Nucleic Acids Res 2012; 40:11659-72; PMID:23034808; http://dx.doi.org/10.1093/nar/gks895
  • Evguenieva-Hackenberg E, Klug G. New aspects of RNA processing in prokaryotes. Curr Opin Microbiol 2011; 14:587-92; PMID:21945217; http://dx.doi.org/10.1016/j.mib.2011.07.025
  • Commichau, FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik-Habrink M, Hammer E, Völker U, Stülke J. Novel activities of glycolytic enzymes in Bacillus subtilis. Mol Cell Proteomics 2009; 8:1350-60; PMID:19193632; http://dx.doi.org/10.1074/mcp.M800546-MCP200
  • Even S, Pellegrini O, Zig L, Labas V, Vinh J, Bréchemmier-Baey D, Putzer H. Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 2005; 33:2141-52; PMID:15831787; http://dx.doi.org/10.1093/nar/gki505
  • Bechhofer DH. B. subtilis mRNA decay: new parts in the toolkit. Wiley Interdiscip Rev RNA 2011; 2:387-94; PMID:21957024; http://dx.doi.org/10.1002/wrna.66
  • Laalami S, Zig L, Putzer H. Initiation of mRNA decay in bacteria. Cell Mol Life Sci 71:1799-828; PMID:24064983; http://dx.doi.org/10.1007/s00018-013-1472-4
  • Shahbabian K, Jamalli A, Zig L, Putzer H. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 2009; 28:3523-33; PMID:19779461; http://dx.doi.org/10.1038/emboj.2009.283
  • Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J. RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol Microbiol 2011; 81:1459-73; PMID:21815947; http://dx.doi.org/10.1111/j.1365-2958.2011.07777.x
  • Roelofs KG, Wang J, Sintim HO, Lee VT. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. Proc Natl Acad Sci USA 2011; 108:15528-33; PMID:21876132; http://dx.doi.org/10.1073/pnas.1018949108
  • Müller P, Jahn N, Ring C, Maiwald C, Neubert R, Meißner C, Brantl S. A multistress responsive type I toxin-antitoxin system: bsrE/SR5 from Bacillus subtilis. RNA Biol 2016; in press; PMID:26940229; http://dx.doi.org/10.1080/15476286.2016.1156288
  • Daou-Chabo R, Condon C. RNase J1 endonuclease activity as a probe of RNA secondary structure. RNA 2009; 15:1417-25; PMID:19458035; http://dx.doi.org/10.1261/rna.1574309
  • Mathy N, Hébert A, Mervelet P, Bénard L, Dorléans A, Li de la Sierra-Gallay I, Noirot P, Putzer H, Condon C. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour. Mol Microbiol 2010; 75:489-98; PMID:20025672; http://dx.doi.org/10.1111/j.1365-2958.2009.07004.x
  • Rice JB, Vanderpool CK. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res 2011; 39:3806-19; PMID:21245045; http://dx.doi.org/10.1093/nar/gkq1219
  • Balasubramanian D, Vanderpool CK. Deciphering the interplay between two independent functions of the small RNA regulator SgrS in Salmonella. J Bacteriol 2013; 195:2620-30; PMID:23935052; http://dx.doi.org/10.1128/JB.00586-13
  • Lehnik-Habrink M, Lewis RJ, Mäder U, Stülke J. RNA degradation in Bacillus subtilis: an interplay of essential endo- and exoribonucleases. Mol Microbiol 2012; 84:1005-17; PMID:22568516; http://dx.doi.org/10.1111/j.1365-2958.2012.08072.x
  • Newman JA, Hewitt L, Rodrigues C, Solovyova AS, Harwood CR, Lewis RJ. Dissection of the network of interactions that links RNA processing with glycolysis in the Bacillus subtilis degradosome. J Mol Biol 2012; 416:121-36; PMID:22198292; http://dx.doi.org/10.1016/j.jmb.2011.12.024
  • Nurmohamed S, Vincent HA, Titman CM, Chandran V, Pears MR, Du D, Griffin JHL, Callaghan AJ, Luisi BF. Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli. J Biol Chem 2011; 286:14315-23; PMID:21324911; http://dx.doi.org/10.1074/jbc.M110.200741
  • Fillinger S, Boschi-Muller S, Azza S, Ervyn E, Branlant G, Aymerich S. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 2000; 275:14031-7; PMID:10799476; http://dx.doi.org/10.1074/jbc.275.19.14031
  • Evguenieva-Hackenberg E, Schiltz E, Klug G. Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 2002; 277:46145-50; PMID:12359717; http://dx.doi.org/10.1074/jbc.M208717200
  • Lee K, Zhan X, Gao J, Qiu J, Feng Y, Meganathan R, Cohen SN, Georgiou G. RraA, a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 2003; 114:623-34; PMID:13678585; http://dx.doi.org/10.1016/j.cell.2003.08.003
  • Gao J, Lee K, Zhao M, Qiu J, Zhan X, Xaxena A, Moore CJ, Cohen SN, Georgiou G. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol Microbiol 2006; 61:394-406; PMID:16771842; http://dx.doi.org/10.1111/j.1365-2958.2006.05246.x
  • Gorna MW, Pietras Z, Tsai YC, Callaghan AJ, Hernández H, Robinson CV, Luisi BF. The regulatory protein RraA modulates RNA-binding and helicase activities of the E. coli degradosome. RNA 2010; 16:553-62; PMID:20106955; http://dx.doi.org/10.1261/rna.1858010
  • Steinmetzer K, Brantl S. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA. J Mol Biol 1997; 269:648-93; PMID:9223633; http://dx.doi.org/10.1006/jmbi.1997.1083
  • Heidrich N, Brantl S. Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid pIP501 for efficient inhibition by the antisense RNA. J Mol Biol 2003; 333:917-29; PMID:14583190; http://dx.doi.org/10.1016/j.jmb.2003.09.020
  • Gimpel M, Brantl S. Construction of a modular plasmid family for chromosomal integration in Bacillus subtilis. J Microbiol Methods 2012; 91:312-7; PMID:22982324; http://dx.doi.org/10.1016/j.mimet.2012.09.003
  • Lehnik-Habrink M, Pförtner H, Rempeters L, Pietack N, Herzberg C, Stülke J. The RNA degradosome in Bacilus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex. Mol Microbiol 2010; 77:958-71; PMID:20572937; http://dx.doi.org/10.1111/j.1365-2958.2010.07264.x