1,335
Views
15
CrossRef citations to date
0
Altmetric
Point of View - Solicited

LncRNAs: Bridging environmental sensing and gene expression

, & ORCID Icon
Pages 1189-1196 | Received 15 Jul 2016, Accepted 16 Sep 2016, Published online: 01 Nov 2016

References

  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81:145-66; PMID:22663078; http://dx.doi.org/10.1146/annurev-biochem-051410-092902
  • Ambros V. microRNAs: Tiny regulators with great potential. Cell 2001; 107:823-6; PMID:11779458; http://dx.doi.org/10.1016/S0092-8674(01)00616-X
  • Lagos-quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001; 294:853-8; PMID:11679670; http://dx.doi.org/10.1126/science.1064921
  • Muramatsu M, Hodnett JL, Busch H. Base composition of fractions of nuclear and nucleolar ribonucleic acid obtained by sedimentation and chromatography. J Biol Chem 1966; 241:1544-50; PMID:5946613
  • Penman S, Smith I, Holtzman E. Ribosomal RNA synthesis and processing in a particulate site in the HeLa cell nucleus. Science 1966; 154:786-9; PMID:5919449; http://dx.doi.org/10.1126/science.154.3750.786
  • Jarmolowski A, Zagorski J, Li H V, Fournier MJ. Identification of essential elements in U14 RNA of Saccharomyces cerevisiae. EMBO J 1990; 9:4503-9; PMID:2265615
  • Darzacq X, Jády BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: A novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J 2002; 21:2746-56; PMID:12032087; http://dx.doi.org/10.1093/emboj/21.11.2746
  • Kim T, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-haley K, Kuersten S, et al. Widespread transcription at neuronal activity-regulated enhancers. 2010; 465:182-7; PMID:20393465; http://dx.doi.org/10.1038/nature09033
  • Nagano T, Fraser P. Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome 2009; 20:557-62; PMID:19727951; http://dx.doi.org/10.1007/s00335-009-9218-1
  • Chowdhury D, Choi YE, Brault ME. Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 2013; 14:181-9; PMID:23385724; http://dx.doi.org/10.1038/nrm3523
  • Woehle C, Kusdian G, Radine C, Graur D, Landan G, Gould SB. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genomics 2014; 15:1-12; PMID:24382143; http://dx.doi.org/10.1186/1471-2164-15-906
  • Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC. Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genomics 2015; 16:454; PMID:26070627; http://dx.doi.org/10.1186/s12864-015-1603-4
  • Yamashita A, Shichino Y, Yamamoto M. The long non-coding RNA world in yeasts. Biochim Biophys Acta 2015; 1859:147-54; PMID:26642900; http://dx.doi.org/10.1016/j.bbagrm.2015.08.003
  • Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides. Elife 2014; 3:e03523; PMID:25233276; http://dx.doi.org/10.7554/eLife.03523
  • Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007; 14:103-5; PMID:17277804; http://dx.doi.org/10.1038/nsmb0207-103
  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS ZY. Role of histone H3 Lysine 27 Methylation in X inactivation. Science 2002; 298:1039-43; PMID:12351676; http://dx.doi.org/10.1126/science.1076997
  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, et al. Functional demarcation of active and silent chromatin domains in human HOX Loci by noncoding RNAs. Cell 2007; 129:1311-23; PMID:17604720; http://dx.doi.org/10.1016/j.cell.2007.05.022
  • Fantom Consortium T. The transcriptional landscape of the mammalian genome. Science 2006; 309:1559-63; PMID:16141072; http://dx.doi.org/10.1126/science.1112014
  • Han P, Chang CP. Long non-coding RNA and chromatin remodeling. RNA Biol 2016; 12:1094-98; PMID:26177256; http://dx.doi.org/10.1080/15476286.2015.1063770
  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-DiNardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32:232-46; PMID:18951091; http://dx.doi.org/10.1016/j.molcel.2008.08.022
  • Tsai M, Manor O, Wan Y, Mosammaparast N, Wang JK, Shi Y, Segal E, Chang HY. Long Noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329:689-93; PMID:20616235; http://dx.doi.org/10.1126/science.1192002
  • Park M, Salgado JM, Ostroff L, Helton TD, Camenzind G, Harris KM, Ehlers MD, Augusta G. Functional demarcation of active and silent chromatin domains in human HOX Loci by Non-Coding RNAs. Cell 2007; 52:817-30; PMID:17604720; http://dx.doi.org/10.1016/j.cell.2007.05.022
  • Kawaguchi T, Tanigawa A, Naganuma T, Ohkawa Y, Souquere S, Pierron G, Hirose T. SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies. Proc Natl Acad Sci U S A 2015; 112:4304-9; PMID:25831520; http://dx.doi.org/10.1073/pnas.1423819112
  • Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie BR, Protacio A, Flynn RA, Gupta RA, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472:120-4; PMID:21423168; http://dx.doi.org/10.1038/nature09819
  • Paci P, Colombo T, Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014; 8:83; PMID:25033876; http://dx.doi.org/10.1186/1752-0509-8-83
  • Gong C, Maquat LE. lncRNAs transactivate Staufen1-mediated mRNA decay by duplexing with 3′UTRs via Alu elements. Nature 2011; 470:284-8; PMID:21307942; http://dx.doi.org/10.1038/nature09701
  • Melé M, Rinn JL. “Cat's Cradling” the 3D Genome by the Act of LncRNA Transcription. Mol Cell 2016; 62:657-64; PMID:27259198; http://dx.doi.org/10.1016/j.molcel.2016.05.011
  • Martens JA, Laprade L, Winston F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 2004; 429:571-4; PMID:15175754; http://dx.doi.org/10.1038/nature02538
  • Nadal-Ribelles M, Solé C, Xu Z, Steinmetz LM, de Nadal E, Posas F. Control of Cdc28 CDK1 by a Stress-Induced lncRNA. Mol Cell 2014; 53:549-61; PMID:24508389; http://dx.doi.org/10.1016/j.molcel.2014.01.006
  • Xu Z, Wei W, Gagneur J, Clauder-Munster S, Smolik M, Huber W, Steinmetz LM. Antisense expression increases gene expression variability and locus interdependency. Mol Syst Biol 2011; 7:468; PMID:21326235; http://dx.doi.org/10.1038/msb.2011.1
  • Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol Cell Ther 2015; 3:5; PMID:26082843; http://dx.doi.org/10.1186/s40591-015-0042-6
  • Greco S, Zaccagnini G, Perfetti A, Fuschi P, Valaperta R, Voellenkle C, Castelvecchio S, Gaetano C, Finato N, Beltrami AP, et al. Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med 2016; 14:183; PMID:27317124; http://dx.doi.org/10.1186/s12967-016-0926-5
  • Botstein D, Fink GR. Yeast: An experimental organism for 21st century biology. Genetics 2011; 189:695-704; PMID:22084421; http://dx.doi.org/10.1534/genetics.111.130765
  • van Dijk EL, Chen CL, D'Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Né P, Loeillet S, et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 2011; 475:114-7; PMID:21697827; http://dx.doi.org/10.1038/nature10118
  • Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Münster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM. Bidirectional promoters generate pervasive transcription in yeast. Nature 2009; 457:1033-7; PMID:19169243; http://dx.doi.org/10.1038/nature07728
  • Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A, Aubenton-carafa Y, Xu Z, Steinmetz LM, Jacquier A. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009; 457:1038-42; PMID:19169244; http://dx.doi.org/10.1038/nature07747
  • Vadkertiová R, Molnárová J, Vránová D, Sláviková E. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can J Microbiol 2012; 58:1344-52; PMID:23210991; http://dx.doi.org/10.1139/cjm-2012-0468
  • Wheeler RT, Kupiec M, Magnelli P, Abeijon C, Fink GR. A Saccharomyces cerevisiae mutant with increased virulence. Proc Natl Acad Sci U S A 2003; 100:2766-70; PMID:12589024; http://dx.doi.org/10.1073/pnas.0437995100
  • Demir O, Aksan Kurnaz I. An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch. Comput Biol Chem 2006; 30:179-92; PMID:16679066; http://dx.doi.org/10.1016/j.compbiolchem.2006.02.004
  • Wang Y, Pierce M, Schneper L, Güldal CG, Zhang X, Tavazoie S, Broach JR. Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLoS Biol 2004; 2:610-22; PMID:15138498; http://dx/doi.org/10.1371/journal.pbio.0020128
  • Zaman S, Lippman SI, Zhao X, Broach JR. How Saccharomyces responds to nutrients. Annu Rev Genet 2008; 42:27-81; PMID:18303986; http://dx.doi.org/10.1146/annurev.genet.41.110306.130206
  • Williams FE, Varanasi U, Trumbly RJ. The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol Cell Biol 1991; 11:3307-16; PMID:2038333; http://dx.doi.org/10.1128/MCB.11.6.3307
  • Zhou H, Winston F. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet 2001; 2:5; PMID:11281938; http://dx.doi.org/10.1186/1471-2156-2-5
  • Traven A, Jelicic B, Sopta M. Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 2006; 7:496-9; PMID:16670683; http://dx.doi.org/10.1038/sj.embor.7400679
  • Johnston M, Flick JS, Pexton T. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:3834-41; PMID:8196626; http://dx.doi.org/10.1128/MCB.14.6.3834
  • Flick JS, Johnston M. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol 1991; 11:5101-12; PMID:1922034; http://dx.doi.org/10.1128/MCB.11.10.5101
  • Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster. Mol Cell 2008; 32:685-95; PMID:19061643; http://dx.doi.org/10.1016/j.molcel.2008.09.027
  • Lenstra TL, Coulon A, Chow CC, Larson DR, Lenstra TL, Coulon A, Chow CC, Larson DR. Single-molecule imaging reveals a switch between spurious and functional ncRNA transcription article single-molecule imaging reveals a switch between spurious and functional ncRNA transcription. Mol Cell 2015; 60:597-610; PMID:26549684; http://dx.doi.org/10.1016/j.molcel.2015.09.028
  • Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002; 415:810-3; PMID:11845212; http://dx.doi.org/10.1038/415810a
  • Hainer SJ, Pruneski JA, Mitchell RD, Monteverde RM, Martens JA. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev 2011; 25:29-40; PMID:21156811; http://dx.doi.org/10.1101/gad.1975011
  • Martens JA, Wu PYJ, Winston F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 2005; 19:2695-704; PMID:16291644; http://dx.doi.org/10.1101/gad.1367605
  • Cloutier SC, Wang S, Ma WK, Petell CJ, Tran EJ. Long noncoding RNAs promote transcriptional poising of inducible genes. PLoS Biol 2013; 11:32-4; PMID:24260025; http://dx.doi.org/10.1371/journal.pbio.1001715
  • Cloutier SC, Wang S, Ma WK, Al Husini N, Dhoondia Z, Ansari A, Pascuzzi PE, Tran EJ. Regulated formation of lncRNA-DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol Cell 2016; 61:393-404; PMID:26833086; http://dx.doi.org/10.1016/j.molcel.2015.12.024
  • Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 2008; 322:1717-21; PMID:18988810; http://dx.doi.org/10.1126/science.1163802
  • Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 2012; 338:1469-72; PMID:23239737; http://dx.doi.org/10.1126/science.1228110
  • Ma WK, Cloutier SC, Tran EJ. The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 2013; 425:3824-38; PMID:23721653; http://dx.doi.org/10.1016/j.jmb.2013.05.016
  • Ma WK, Paudel BP, Xing Z, Sabath IG, Rueda D, Tran EJ. Recruitment, duplex unwinding and protein-mediated inhibition of the dead-box RNA helicase Dbp2 at actively transcribed chromatin. J Mol Biol 2016; 428:1091-106; PMID:26876600; http://dx.doi.org/10.1016/j.jmb.2016.02.005
  • Cloutier SC, Ma WK, Nguyen LT, Tran EJ. The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J Biol Chem 2012; 287:26155-66; PMID:22679025; http://dx.doi.org/10.1074/jbc.M112.383075
  • Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet 2015; 16:583-97; PMID:26370899; http://dx.doi.org/10.1038/nrg3961
  • Aguilera A, García-Muse T. R Loops: From transcription byproducts to threats to genome stability. Mol Cell 2012; 46:115-24; PMID:22541554; http://dx.doi.org/10.1016/j.molcel.2012.04.009
  • Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, Li X. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 2011; 25:2041-56; PMID:21979917; http://dx.doi.org/10.1101/gad.17010011
  • Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM, Eaton ML, et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell 2015; 57:636-47; PMID:25699710; http://dx.doi.org/10.1016/j.molcel.2015.01.011
  • Rutkauskas M, Sinkunas T, Siksnys V, Seidel R, Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R. Directional R-Loop formation by the CRISPR-Cas surveillance complex cascade provides efficient article directional R-Loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. CellReports 2015; 10:1534-43; PMID:25753419; http://dx.doi.org/10.1016/j.celrep.2015.01.067
  • Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci U S A 2014; 111:9798-803; PMID:24912165; http://dx.doi.org/10.1073/pnas.1402597111
  • Vaidyanathan B, Chaudhuri J. Epigenetic codes programing class switch recombination. Front Immunol 2015; 6:405; PMID:26441954; http://dx.doi.org/10.3389/fimmu.2015.00405
  • Yu K, Chedin F, Hsieh C-L, Wilson TE, Lieber MR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol 2003; 4:442-51; PMID:12679812; http://dx.doi.org/10.1038/ni919
  • Ginno PA, Lott PL, Christensen HC, Korf I, Chédin F. R-Loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 2012; 45:814-25; PMID:22387027; http://dx.doi.org/10.1016/j.molcel.2012.01.017
  • Sun Q, Csorba T, Skourti-Stathaki K, Proudfoot NJ, Dean C. R-Loop stabilization represses antisense transcription at the arabidopsis FLC Locus. Science 2013; 340:619-21; PMID:23641115; http://dx.doi.org/10.1126/science.1234848
  • Wahba L, Gore SK, Koshland D. The homologous recombination machinery modulates the formation of RNA-DNA hybrids and associated chromosome instability. Elife 2013; 2013:1-20; PMID:23795288; http://dx.doi.org/10.7554/eLife.00505
  • Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 2014; 28:1384-96; PMID:24990962; http://dx.doi.org/10.1101/gad.242990.114
  • Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 2016; 351:867-71; PMID:26841432; http://dx.doi.org/10.1126/science.aad8282
  • Wahba L, Amon JD, Koshland D, Vuica-Ross M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell 2011; 44:978-88; PMID:22195970; http://dx.doi.org/10.1016/j.molcel.2011.10.017
  • Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A, Chao J, Elliott O, Liu Z, et al. RNA exosome regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2015; 21:193-201; PMID:25957685; http://dx.doi.org/10.1016/j.cell.2015.04.034
  • Beck ZT, Cloutier SC, Schipma MJ, Petell CJ, Ma WK, Tran EJ. Regulation of glucose-dependent gene expression by the RNA helicase Dbp2 in Saccharomyces cerevisiae. Genetics 2014; 198:1001-14; PMID:25164881; http://dx.doi.org/10.1534/genetics.114.170019
  • Haruki H, Nishikawa J, Laemmli UK. The anchor-away technique: Rapid, conditional establishment of yeast mutant phenotypes. Mol Cell 2008; 31:925-32; PMID:18922474; http://dx.doi.org/10.1016/j.molcel.2008.07.020
  • Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 2011; 42:794-805; PMID:21700224; http://dx.doi.org/10.1016/j.molcel.2011.04.026
  • Hausen P, Stein H. Ribonuclease H. An enzyme degrading the RNA moiety of DNA-RNA hybrids. Eur J Biochem 1970; 14:278-83; PMID:5506170; http://dx.doi.org/10.1111/j.1432-1033.1970.tb00287.x
  • Chan YA, Aristizabal MJ, Lu PYT, Luo Z, Hamza A, Kobor MS, Stirling PC, Hieter P. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 2014; 10:e1004288; PMID:24743342; http://dx.doi.org/10.1371/journal.pgen.1004288
  • DeVit MJ, Johnston M. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 1999; 9:1231-41; PMID:10556086; http://dx.doi.org/10.1016/S0960-9822(99)80503-X
  • Papamichos-Chronakis M, Gligoris T, Tzamarias D. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Rep 2004; 5:368-72; PMID:15031717; http://dx.doi.org/10.1038/sj.embor.7400120
  • Wahba L, Costantino L, Tan FJ, Zimmer A, Koshland D. S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 2016; 30:1327-38; PMID:27298336; http://dx.doi.org/10.1101/gad.280834.116
  • Nadel J, Athanasiadou R, Lemetre C, Wijetunga NA, Ó Broin P, Sato H, Zhang Z, Jeddeloh J, Montagna C, Golden A, et al. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenetics Chromatin 2015; 8:46; PMID:26579211; http://dx.doi.org/10.1186/s13072-015-0040-6
  • Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL, Carrico RJ. Characterization of monoclonal antibody to DNA•RNA and its application to immunodetection of hybrids. J Immunol Methods 1986; 89:123-30; PMID:2422282; http://dx.doi.org/10.1016/0022-1759(86)90040-2
  • Alcid EA, Tsukiyama T. Expansion of antisense lncRNA transcriptomes in budding yeast species since the loss of RNAi. Nat Struct Mol Biol 2016; 23:450-5; PMID:27018804; http://dx.doi.org/10.1038/nsmb.3192
  • Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 2007; 445:666-70; PMID:17237763; http://dx.doi.org/10.1038/nature05519
  • Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 2010; 24:2264-9; PMID:20952535; http://dx.doi.org/10.1101/gad.590910
  • Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, Schmitt N, Dold A, Ginsberg D, Grummt I. LncRNA Khps1 regulates expression of the Proto-oncogene SPHK1 via Triplex-mediated changes in chromatin structure. Mol Cell 2015; 60:626-36; PMID:26590717; http://dx.doi.org/10.1016/j.molcel.2015.10.001
  • Smith JE, Alvarez-Dominguez JR, Kline N, Huynh NJ, Geisler S, Hu W, Coller J, Baker KE. Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. Cell Rep 2014; 7:1858-66; PMID:24931603; http://dx.doi.org/10.1016/j.celrep.2014.05.023
  • Zhang A, Zhang J, Kaipainen A, Lucas JM, Yang H. Long non-coding RNA, a newly deciphered “code” in prostate cancer. Cancer Lett 2016; 375(2):323-30; PMID:26965999; http://dx.doi.org/10.1016/j.canlet.2016.03.003
  • Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009; 28:195-208; PMID:18836484; http://dx.doi.org/10.1038/onc.2008.373
  • Rice AP. Roles of microRNAs and long-noncoding RNAs in human immunodeficiency virus replication. Wiley Interdiscip Rev RNA 2015; 6:661-70; PMID:26394053; http://dx.doi.org/10.1002/wrna.1308
  • Arnes L, Akerman I, Balderes DA, Ferrer J, Sussel L. βlinc1 encodes a long noncoding RNA that regulates islet β-cell formation and function. Genes Dev 2016; 30:502-7; PMID:26944677; http://dx.doi.org/10.1101/gad.273821.115
  • Kim J, Kim KM, Noh JH, Yoon JH, Abdelmohsen K, Gorospe M. Long noncoding RNAs in diseases of aging. Biochim Biophys Acta - Gene Regul Mech 2016; 1859:209-21; PMID:26141605; http://dx.doi.org/10.1016/j.bbagrm.2015.06.013
  • Szeto CYY, Lin CH, Choi SC, Yip TTC, Ngan RKC, Tsao GSW, Li Lung M. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA-microRNA regulatory network in nasopharyngeal carcinoma model systems. FEBS Open Bio 2014; 4:128-40; PMID:24490137; http://dx.doi.org/10.1016/j.fob.2014.01.004
  • Minajigi A, Froberg JE, Wei C, Sunwoo H, Kesner B, Colognori D, Lessing D, Payer B, Boukhali M, Haas W, et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 2015; PMID:26089354; http://dx.doi.org/10.1126/science.aab2276
  • Jiang F, Frey BR, Evans ML, Friel JC, Hopper JE. Gene activation by dissociation of an inhibitor from a transcriptional activation domain. Mol Cell Biol 2009; 29:5604-10; PMID:19651897; http://dx.doi.org/10.1128/MCB.00632-09
  • Bryant GO, Ptashne M. Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 2003; 11:1301-9; PMID:12769853; http://dx.doi.org/10.1016/S1097-2765(03)00144-8
  • Huang YC, Chen HT, Teng SC. Intragenic transcription of a noncoding RNA modulates expression of ASP3 in budding yeast. RNA 2010; 16:2085-93; PMID:20817754; http://dx.doi.org/10.1261/rna.2177410
  • Castelnuovo M, Rahman S, Guffanti E, Infantino V, Stutz F, Zenklusen D. Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct {&} Mol Biol 2013; 20:851-8; http://dx.doi.org/10.1038/nsmb.2598
  • Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 2007; 131:706-17; PMID:18022365; http://dx.doi.org/10.1016/j.cell.2007.09.014
  • Camblong J, Beyrouthy N, Guffanti E, Schlaepfer G, Steinmetz LM, Stutz F. Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev 2009; 23:1534-45; PMID:19571181; http://dx.doi.org/10.1101/gad.522509
  • Uhler JP, Hertel C, Svejstrup JQ. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci U S A 2007; 104:8011-6; PMID:17470801; http://dx.doi.org/10.1073/pnas.0702431104
  • Thiebaut M, Colin J, Neil H, Jacquier A, Séraphin B, Lacroute F, Libri D. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol Cell 2008; 31:671-82; PMID:18775327; http://dx.doi.org/10.1016/j.molcel.2008.08.010
  • Kim T, Xu Z, Clauder-Munster S, Steinmetz LM, Buratowski S. Set3 HDAC mediates effects of overlapping non-coding transcription on gene induction kinetics. Cell 2012; 150:1158-69; PMID:22959268; http://dx.doi.org/10.1016/j.cell.2012.08.016
  • Pinskaya M, Gourvennec S, Morillon A. H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation. EMBO J 2009; 28:1697-707; PMID:19407817; http://dx.doi.org/10.1038/emboj.2009.108
  • Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol 2008; 6:2817-30; PMID:19108609; http://dx.doi.org/10.1371/journal.pbio.0060326
  • Berretta J, Pinskaya M, Morillon A. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 2008; 22:615-26; PMID:18316478; http://dx.doi.org/10.1101/gad.458008
  • Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. TL - 106. Proc Natl Acad Sci U S A 2009; 106:18321-6; PMID:19805129; http://dx.doi.org/10.1073/pnas.0909641106
  • Van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S, Van Oudenaarden A, Primig M, Amon A. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 2012; 150:1170-81; PMID:22959267; http://dx.doi.org/10.1016/j.cell.2012.06.049
  • Hongay CF, Grisafi PL, Galitski T, Fink GR. Antisense transcription controls cell fate in saccharomyces cerevisiae. Cell 2006; 127:735-45; PMID:17110333; http://dx.doi.org/10.1016/j.cell.2006.09.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.