3,945
Views
88
CrossRef citations to date
0
Altmetric
Point of View

RNA biology of angiogenin: Current state and perspectives

, , , &
Pages 171-178 | Received 16 Nov 2016, Accepted 09 Dec 2016, Published online: 23 Dec 2016

References

  • Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285(21):1182-6; PMID:4938153; http://dx.doi.org/10.1056/NEJM197111182852108
  • Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 1985; 24(20):5480-6; PMID:4074709; http://dx.doi.org/10.1021/bi00341a030
  • Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL. Amino acid sequence of human tumor derived angiogenin. Biochemistry 1985; 24(20):5486-94; PMID:2866794; http://dx.doi.org/10.1021/bi00341a031
  • Russo N, Shapiro R, Acharya KR, Riordan JF, Vallee BL. Role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc Natl Acad Sci U S A 1994; 91(8):2920-4; PMID:8159680; http://dx.doi.org/10.1073/pnas.91.8.2920
  • Shapiro R, Vallee BL. Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry 1989; 28(18):7401-8; PMID:2479414; http://dx.doi.org/10.1021/bi00444a038
  • Curran TP, Shapiro R, Riordan JF. Alteration of the enzymatic specificity of human angiogenin by site-directed mutagenesis. Biochemistry 1993; 32(9):2307-13; PMID:8095159; http://dx.doi.org/10.1021/bi00060a023
  • Shapiro R, Riordan JF, Vallee BL. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 1986; 25(12):3527-32; PMID:2424496; http://dx.doi.org/10.1021/bi00360a008
  • Gao X, Xu Z. Mechanisms of action of angiogenin. Acta Biochim Biophys Sin (Shanghai) 2008; 40(7):619-24. Epub 2008/07/08; PMID:18604453; http://dx.doi.org/10.1111/j.1745-7270.2008.00442.x
  • Goo SM, Cho S. The expansion and functional diversification of the mammalian ribonuclease a superfamily epitomizes the efficiency of multigene families at generating biological novelty. Genome Biol Evol 2013; 5(11):2124-40; PMID:24162010; http://dx.doi.org/10.1093/gbe/evt161
  • Sorrentino S. The 8 human “canonical” ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett 2010; 584(11):2194-200; PMID:20388512; http://dx.doi.org/10.1016/j.febslet.2010.04.018
  • Moenner M, Gusse M, Hatzi E, Badet J. The widespread expression of angiogenin in different human cells suggests a biological function not only related to angiogenesis. Eur J Biochem 1994; 226(2):483-90; PMID:7528139; http://dx.doi.org/10.1111/j.1432-1033.1994.tb20073.x
  • Olson KA, Verselis SJ, Fett JW. Angiogenin is regulated in vivo as an acute phase protein. Biochem Biophys Res Commun 1998; 242(3):480-3. Epub 1998/02/17; PMID:9464241; http://dx.doi.org/10.1006/bbrc.1997.7990
  • Skorupa A, King MA, Aparicio IM, Dussmann H, Coughlan K, Breen B, Kieran D, Concannon CG, Marin P, Prehn JH. Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J Neurosci 2012; 32(15):5024-38; PMID:22496549; http://dx.doi.org/10.1523/JNEUROSCI.6366-11.2012
  • Hu GF, Riordan JF, Vallee BL. A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc Natl Acad Sci U S A 1997; 94(6):2204-9; PMID:9122172; http://dx.doi.org/10.1073/pnas.94.6.2204
  • Harper JW, Vallee BL. A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry 1989; 28(4):1875-84; PMID:2719939; http://dx.doi.org/10.1021/bi00430a067
  • Shapiro R, Vallee BL. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci U S A 1987; 84(8):2238-41; PMID:3470787; http://dx.doi.org/10.1073/pnas.84.8.2238
  • Rybak SM, Vallee BL. Base cleavage specificity of angiogenin with Saccharomyces cerevisiae and Escherichia coli 5S RNAs. Biochemistry 1988; 27(7):2288-94; PMID:3289612; http://dx.doi.org/10.1021/bi00407a007
  • Li Z, Ender C, Meister G, Moore PS, Chang Y, John B. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 2012; 40(14):6787-99; PMID:22492706; http://dx.doi.org/10.1093/nar/gks307
  • Pereira ER, Liao N, Neale GA, Hendershot LM. Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 2010; 5(9); PMID:20824063; http://dx.doi.org/10.1371/journal.pone.0012521
  • Kishimoto K, Yoshida S, Ibaragi S, Yoshioka N, Okui T, Hu GF, Sasaki A. Hypoxia-induced up-regulation of angiogenin, besides VEGF, is related to progression of oral cancer. Oral Oncol 2012; 48(11):1120-7; PMID:22694909; http://dx.doi.org/10.1016/j.oraloncology.2012.05.009
  • Ibaragi S, Yoshioka N, Kishikawa H, Hu JK, Sadow PM, Li M, Hu GF. Angiogenin-stimulated rRNA transcription is essential for initiation and survival of AKT-induced prostate intraepithelial neoplasia. Mol Cancer Res 2009; 7(3):415-24; PMID:19258415; http://dx.doi.org/10.1158/1541-7786.MCR-08-0137
  • Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 2009; 185(1):35-42; PMID:19332886; http://dx.doi.org/10.1083/jcb.200811106
  • Fu H, Feng J, Liu Q, Sun F, Tie Y, Zhu J, Xing R, Sun Z, Zheng X. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 2009; 583(2):437-42. Epub 2008/12/31; PMID:19114040; http://dx.doi.org/10.1016/j.febslet.2008.12.043
  • Czech A, Wende S, Morl M, Pan T, Ignatova Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 2013; 9(8):e1003767; PMID:24009533; http://dx.doi.org/10.1371/journal.pgen.1003767
  • Zheng G, Qin Y, Clark WC, Dai Q, Yi C, He C, Lambowitz AM, Pan T. Efficient and quantitative high-throughput tRNA sequencing. Nat Methods 2015; 12(9):835-7; PMID:26214130; http://dx.doi.org/10.1038/nmeth.3478
  • Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods 2015; 12(9):879-84; PMID:26237225; http://dx.doi.org/10.1038/nmeth.3508
  • Klungland A, Dahl JA. Dynamic RNA modifications in disease. Curr Opin Genet Dev 2014; 26:47-52; PMID:25005745; http://dx.doi.org/10.1016/j.gde.2014.05.006
  • Wang X, He C. Dynamic RNA modifications in posttranscriptional regulation. Mol Cell 2014; 56(1):5-12; PMID:25280100; http://dx.doi.org/10.1016/j.molcel.2014.09.001
  • Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 2010; 24(15):1590-5. Epub 2010/08/04; PMID:20679393; http://dx.doi.org/10.1101/gad.586710
  • Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 2012; 19(9):900-5; PMID:22885326; http://dx.doi.org/10.1038/nsmb.2357
  • Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, Lukk M, Lombard P, Treps L, Popis M, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 2014; 33(18):2020-39; PMID:25063673
  • Blanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J, Sajini A, Tanna H, Cortés-Garrido R, Gkatza N, et al. Stem cell function and stress response are controlled by protein synthesis. Nature 2016; 534(7607):335-40; PMID:27306184; http://dx.doi.org/10.1038/nature18282
  • Emara M, Ivanov P, Hickman T, Dawra N, Tisdale S, Kedersha N, Hu GF, Anderson P. Angiogenin-induced tiRNAs promote stress-induced stress granule assembly. J Biol Chem 2010; 285(14):10959-68; PMID:20129916; http://dx.doi.org/10.1074/jbc.M109.077560
  • Panas MD, Ivanov P, Anderson P. Mechanistic insights into mammalian stress granule dynamics. J Cell Biol 2016; 215(3):313-23; PMID:27821493; http://dx.doi.org/10.1083/jcb.201609081
  • Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-Induced tRNA Fragments Inhibit Translation Initiation. Mol Cell 2011; 43(4):613-23; PMID:21855800; http://dx.doi.org/10.1016/j.molcel.2011.06.022
  • Lyons SM, Achorn C, Kedersha NL, Anderson PJ, Ivanov P. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res 2016; 44(14):6949-60; PMID:27174937; http://dx.doi.org/10.1093/nar/gkw418
  • Saikia M, Jobava R, Parisien M, Putnam A, Krokowski D, Gao XH, Guan BJ, Yuan Y, Jankowsky E, Feng Z, et al. Angiogenin-Cleaved tRNA Halves Interact with Cytochrome c, Protecting Cells from Apoptosis during Osmotic Stress. Mol Cell Biol 2014; 34(13):2450-63; PMID:24752898; http://dx.doi.org/10.1128/MCB.00136-14
  • Yuan S, Akey CW. Apoptosome structure, assembly, and procaspase activation. Structure 2013; 21(4):501-15; PMID:23561633; http://dx.doi.org/10.1016/j.str.2013.02.024
  • Deng J, Ptashkin RN, Chen Y, Cheng Z, Liu G, Phan T, Deng X, Zhou J, Lee I, Lee YS, et al. Respiratory syncytial virus utilizes a tRNA fragment to suppress antiviral responses through a novel targeting mechanism. Mol Ther 2015; 23(10):1622-9; PMID:26156244; http://dx.doi.org/10.1038/mt.2015.124
  • Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 2013; 21(2):368-79; PMID:23183536; http://dx.doi.org/10.1038/mt.2012.237
  • Selitsky SR, Baran-Gale J, Honda M, Yamane D, Masaki T, Fannin EE, Guerra B, Shirasaki T, Shimakami T, Kaneko S, et al. Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Sci Rep 2015; 5:7675; PMID:25567797; http://dx.doi.org/10.1038/srep07675
  • Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS Lett 2014; 588(23):4297-304; PMID:25220675; http://dx.doi.org/10.1016/j.febslet.2014.09.001
  • Moroianu J, Riordan JF. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci U S A 1994; 91(5):1677-81; PMID:8127865; http://dx.doi.org/10.1073/pnas.91.5.1677
  • Moroianu J, Riordan JF. Identification of the nucleolar targeting signal of human angiogenin. Biochem Biophys Res Commun 1994; 203(3):1765-72; PMID:7945327; http://dx.doi.org/10.1006/bbrc.1994.2391
  • Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley interdisciplinary reviews RNA 2015; 6(2):225-42; PMID:25346433; http://dx.doi.org/10.1002/wrna.1269
  • Mullineux ST, Lafontaine DL. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie 2012; 94(7):1521-32; PMID:22342225; http://dx.doi.org/10.1016/j.biochi.2012.02.001
  • Goodfellow SJ, Zomerdijk JC. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 2013; 61:211-36; PMID:23150253; http://dx.doi.org/10.1007/978-94-007-4525-4_10
  • Schneider DA, French SL, Osheim YN, Bailey AO, Vu L, Dodd J, Yates JR, Beyer AL, Nomura M. RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing. Proc Natl Acad Sci U S A 2006; 103(34):12707-12; PMID:16908835; http://dx.doi.org/10.1073/pnas.0605686103
  • Schneider DA, Michel A, Sikes ML, Vu L, Dodd JA, Salgia S, Osheim YN, Beyer AL, Nomura M. Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol Cell 2007; 26(2):217-29; PMID:17466624; http://dx.doi.org/10.1016/j.molcel.2007.04.007
  • Xu ZP, Tsuji T, Riordan JF, Hu GF. The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun 2002; 294(2):287-92; PMID:12051708; http://dx.doi.org/10.1016/S0006-291X(02)00479-5
  • Xu ZP, Tsuji T, Riordan JF, Hu GF. Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression. Biochemistry 2003; 42(1):121-8; PMID:12515546; http://dx.doi.org/10.1021/bi020465x
  • Li S, Hu MG, Sun Y, Yoshioka N, Ibaragi S, Sheng J, Sun G, Kishimoto K, Hu GF. Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance. Mol Cancer Res 2013; 11(10):1203-14; PMID:23851444; http://dx.doi.org/10.1158/1541-7786.MCR-13-0072
  • Sheng J, Yu W, Gao X, Xu Z, Hu GF. Angiogenin stimulates ribosomal RNA transcription by epigenetic activation of the ribosomal DNA promoter. J Cell Physiol 2014; 229(4):521-9; PMID:24122807; http://dx.doi.org/10.1002/jcp.24477
  • Ruggero D, Pandolfi PP. Does the ribosome translate cancer? Nat Rev Cancer 2003; 3(3):179-92; PMID:12612653; http://dx.doi.org/10.1038/nrc1015
  • Ibaragi S, Yoshioka N, Li S, Hu MG, Hirukawa S, Sadow PM, Hu GF. Neamine inhibits prostate cancer growth by suppressing angiogenin-mediated rRNA transcription. Clin Cancer Res 2009; 15(6):1981-8; PMID:19276260; http://dx.doi.org/10.1158/1078-0432.CCR-08-2593
  • Barcaroli D, Bongiorno-Borbone L, Terrinoni A, Hofmann TG, Rossi M, Knight RA, Matera AG, Melino G, De Laurenzi V. FLASH is required for histone transcription and S-phase progression. ProcNatlAcadSciUSA 2006; 103(40):14808-12; PMID:17003125; http://dx.doi.org/10.1073/pnas.0604227103
  • Yang XC, Burch BD, Yan Y, Marzluff WF, Dominski Z. FLASH, a proapoptotic protein involved in activation of caspase-8, is essential for 3′ end processing of histone pre-mRNAs. Mol Cell 2009; 36:267-78; PMID:19854135; http://dx.doi.org/10.1016/j.molcel.2009.08.016
  • Taylor GA, Thompson MJ, Lai WS, Blackshear PJ. Phosphorylation of tristetraprolin, a potential zinc finger transcription factor, by mitogen stimulation in intact cells and by mitogen-activated protein kinase in vitro. J Biol Chem 1995; 270(22):13341-7; PMID:7768935; http://dx.doi.org/10.1074/jbc.270.22.13341
  • Taylor GA, Thompson MJ, Lai WS, Blackshear PJ. Mitogens stimulate the rapid nuclear to cytosolic translocation of tristetraprolin, a potential zinc-finger transcription factor. Mol Endocrinol 1996; 10(2):140-6; PMID:8825554; http://dx.doi.org/10.1210/mend.10.2.8825554
  • Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 1999; 19(6):4311-23; PMID:10330172; http://dx.doi.org/10.1128/MCB.19.6.4311
  • Kass S, Craig N, Sollner-Webb B. Primary processing of mammalian rRNA involves 2 adjacent cleavages and is not species specific. Mol Cell Biol 1987; 7(8):2891-8; PMID:3670298; http://dx.doi.org/10.1128/MCB.7.8.2891
  • Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 2006; 22(3):351-61; PMID:16678107; http://dx.doi.org/10.1016/j.molcel.2006.03.028
  • Mayer C, Neubert M, Grummt I. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep 2008; 9(8):774-80; PMID:18600236; http://dx.doi.org/10.1038/embor.2008.109
  • Saxena SK, Rybak SM, Davey RT, Jr., Youle RJ, Ackerman EJ. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem 1992; 267(30):21982-6; PMID:1400510
  • Lee FS, Vallee BL. Binding of placental ribonuclease inhibitor to the active site of angiogenin. Biochemistry 1989; 28(8):3556-61; PMID:2742853
  • Saikia M, Krokowski D, Guan BJ, Ivanov P, Parisien M, Hu GF, et al. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 2012; 287(51):42708-25; PMID:23086926; http://dx.doi.org/10.1074/jbc.M112.371799
  • Gebetsberger J, Polacek N. Slicing tRNAs to boost functional ncRNA diversity. RNA biology. 2013; 10(12):1798-806; PMID:24351723; http://dx.doi.org/10.4161/rna.27177
  • Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010; 16(4):673-95. Epub 2010/02/26; PMID: 20181738; http://dx.doi.org/rna.2000810[pii]10.1261/rna.2000810
  • Honda S, Loher P, Shigematsu M, Palazzo JP, Suzuki R, Imoto I, et al. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci U S A. 2015; 112(29):E3816-25; PMID:26124144; http://dx.doi.org/10.1073/pnas.1510077112
  • Anderson P, Kedersha N, Ivanov P. Stress granules, P-bodies and cancer. Biochimica et biophysica acta 2015; 1849(7):861-70; PMID:25482014; http://dx.doi.org/ 10.1016/j.bbagrm.2014.11.009
  • Morgan GT, Reeder RH, Bakken AH. Transcription in cloned spacers of Xenopus laevis ribosomal DNA. Proc Natl Acad Sci U S A. 1983; 80(21):6490-4; PMID:6579535
  • Hoang TT, Raines RT. Molecular basis for the autonomous promotion of cell proliferation by angiogenin. Nucleic Acids Res 2016; PMID:27915233; http://dx.doi.org/10.1093/nar/gkw1192

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.