2,002
Views
9
CrossRef citations to date
0
Altmetric
Point of View

CRISPR-Cas type II-based Synthetic Biology applications in eukaryotic cells

ORCID Icon &
Pages 1286-1293 | Received 07 Nov 2016, Accepted 10 Jan 2017, Published online: 16 Mar 2017

Reference

  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819):1709-12; PMID:17379808; https://doi.org/10.1126/science.1138140
  • Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327(5962):167-70; PMID:20056882; https://doi.org/10.1126/science.1179555
  • Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010; 11(3):181-190; PMID:20125085; https://doi.org/10.1038/nrg2749
  • Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 2016; 164(1–2):29-44; PMID:26771484; https://doi.org/10.1016/j.cell.2015.12.035
  • Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320):67-71; PMID:21048762; https://doi.org/10.1038/nature09523
  • Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482(7385):331-8; PMID:22337052; https://doi.org/10.1038/nature10886
  • Nowak CM, Lawson S, Zerez M, Bleris L. Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Res 2016 ; 44(20):9555-9564
  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011; 471(7340):602-7; PMID:21455174; https://doi.org/10.1038/nature09886
  • Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. crRNA and tracrRNA guide Cas9-mediated DNA interference in streptococcus thermophilus. RNA Biol 2013; 10(5):841-51; PMID:23535272; https://doi.org/10.4161/rna.24203
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096):816-21; PMID:22745249; https://doi.org/10.1126/science.1225829
  • Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 2012; 109(39):E2579-86; PMID:22949671; https://doi.org/10.1073/pnas.1208507109
  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121):819-23; PMID:23287718; https://doi.org/10.1126/science.1231143
  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013; 31(3):233-9; PMID:23360965; https://doi.org/10.1038/nbt.2508
  • Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507(7490):62-7; PMID:24476820; https://doi.org/10.1038/nature13011
  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32(4):347-55; PMID:24584096; https://doi.org/10.1038/nbt.2842
  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5):1173-83; PMID:23452860; https://doi.org/10.1016/j.cell.2013.02.022
  • Marchisio MA, Stelling J. Computational design of synthetic gene circuits with composable parts. Bioinformatics 2008; 24(17):1903-10; PMID:18579565; https://doi.org/10.1093/bioinformatics/btn330
  • Marchisio MA. Parts & pools: a framework for modular design of synthetic gene circuits. Front Bioeng Biotechnol 2014; 2:42; PMID:25340051; https://doi.org/10.3389/fbioe.2014.00042
  • Grilly C, Stricker J, Pang WL, Bennett MR, Hasty J. A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae. Mol Syst Biol 2007; 3:127; PMID:17667949; https://doi.org/10.1038/msb4100168
  • Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EPS, Landgraf D, Phillips I, Silver PA. Rational design of memory in eukaryotic cells. Genes Dev 2007; 21(18):2271-6; PMID:17875664; https://doi.org/10.1101/gad.1586107
  • Marchisio MA. In silico design and in vivo implementation of yeast gene Boolean gates. J Biol Eng 2014; 8(1):6; PMID:24485181; https://doi.org/10.1186/1754-1611-8-6
  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2):442-51; PMID:23849981; https://doi.org/10.1016/j.cell.2013.06.044
  • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013; 41(7):4336-43; PMID:23460208; https://doi.org/10.1093/nar/gkt135
  • Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 2014; 54(4):698-710; PMID:24837679; https://doi.org/10.1016/j.molcel.2014.04.022
  • Gao Y, Zhao Y. Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integrative Plant Biol 2014; 56(4):343-9; PMID:24373158; https://doi.org/10.1111/jipb.12152
  • Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M. Implementation of the CRISPR-Cas9 system in fission yeast. Nat Communications 2014; 5:5344; PMID:25352017; https://doi.org/10.1038/ncomms6344
  • Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 2014; 32(7):670-6; PMID:24752079; https://doi.org/10.1038/nbt.2889
  • Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 2015; 31(7):1120-23; PMID:25414360; https://doi.org/10.1093/bioinformatics/btu743
  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013; 10(10):977-9; PMID:23892898; https://doi.org/10.1038/nmeth.2598
  • Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2013; 2(10):604-13; PMID:23977949; https://doi.org/10.1021/sb400081r
  • Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nature Methods 2013; 10(10):973-6; PMID:23892895; https://doi.org/10.1038/nmeth.2600
  • Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Research 2013; 23(10):1163-71; PMID:23979020; https://doi.org/10.1038/cr.2013.122
  • Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM. RNA-guided transcriptional regulation in plantavia synthetic dCas9-based transcription factors. Plant Biotechnol J 2014; 13(4):578-89; PMID:25400128; https://doi.org/10.1111/pbi.12284
  • Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 2013; 10(11):1116-21; PMID:24076762; https://doi.org/10.1038/nmeth.2681
  • Chakraborty S, Ji H, Kabadi AM, Gersbach CA, Christoforou N, Leong KW. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem cell reports 2014; 3(6):940-7; PMID:25448066; https://doi.org/10.1016/j.stemcr.2014.09.013
  • Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, P R Iyer E, Lin S, Kiani S, Guzman CD, Wiegand DJ, et al. Highly efficient Cas9-mediated transcriptional programming. Nature Methods 2015; 12(4):326-8; PMID:25730490; https://doi.org/10.1038/nmeth.3312
  • Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33(5):510-7; PMID:25849900; https://doi.org/10.1038/nbt.3199
  • Beerli RR, Dreier B, Barbas CF. Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci 2000; 97(4):1495-500; PMID:10660690; https://doi.org/10.1073/pnas.040552697
  • Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014; 159(3):647-61; PMID:25307932; https://doi.org/10.1016/j.cell.2014.09.029
  • Radzisheuskaya A, Shlyueva D, Müller I, Helin K. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res 2016; 44(18):e141-e141; PMID:27353328; https://doi.org/10.1093/nar/gkw583
  • Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, Li Y, Weiss R. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nature Methods 2014; 11(7):723-6; PMID:'24797424; https://doi.org/10.1038/nmeth.2969
  • Hahn S, Hoar ET, Guarente L. Each of three “TATA elements” specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae. Proc Natl Acad Sci 1985; 82(24):8562-6; PMID:3001709; https://doi.org/10.1073/pnas.82.24.8562
  • Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi AI, DePinho RA. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 1995; 80(5):777-86; PMID:7889571; https://doi.org/10.1016/0092-8674(95)90356-9
  • Vignais ML, Huet J, Buhler JM, Sentenac A. Contacts between the factor TUF and RPG sequences. J Biol Chem 1990; 265(24):14669-74. PMID:2201690
  • Bogdanove AJ, Voytas DF. TAL effectors: customizable proteins for DNA targeting. Science 2011; 333(6051):1843-6; PMID:21960622; https://doi.org/10.1126/science.1204094
  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39(12):e82-e82; PMID:21493687; https://doi.org/10.1093/nar/gkr218
  • Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S. Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 2011; 6(5):e19722; PMID:21625552; https://doi.org/10.1371/journal.pone.0019722
  • Lebar T, Jerala R. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits. ACS Synth Biol 2016; 5(10):1050-1058; PMID:27344932; https://doi.org/10.1021/acssynbio.5b00259
  • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013; 31(9):833-8; PMID:23907171; https://doi.org/10.1038/nbt.2675
  • Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517(7536):583-8; PMID:25494202; https://doi.org/10.1038/nature14136
  • Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015; 160(1–2):339-50; PMID:25533786; https://doi.org/10.1016/j.cell.2014.11.052
  • Quenault T, Lithgow T, Traven A. PUF proteins: repression, activation and mRNA localization. Trends Cell Biol 2011; 21(2):104-12; PMID:21115348; https://doi.org/10.1016/j.tcb.2010.09.013
  • Miller MA, Olivas WM. Roles of Puf proteins in mRNA degradation and translation. Wiley Interdiscip Rev RNA 2011; 2(4):471-92; PMID:21957038; https://doi.org/10.1002/wrna.69
  • Abil Z, Denard CA, Zhao H. Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. J Biol Eng 2014; 8:1-11; PMID:24382027; https://doi.org/10.1186/1754-1611-8-7
  • Cooke A, Prigge A, Opperman L, Wickens M. Targeted translational regulation using the PUF protein family scaffold. Proc Natl Acad Sci U S A 2011; 108(38):15870-15875; PMID:21911377; https://doi.org/10.1073/pnas.1105151108
  • Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H. Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling. Cell Research; 26(2):254-7; PMID:26768771; https://doi.org/10.1038/cr.2016.3
  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 2014; 159(3):635-46; PMID:25307933; https://doi.org/10.1016/j.cell.2014.09.039
  • Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque SJ, Cecchi RJ, Kowal EJK, Buchthal J, et al. Comparison of Cas9 activators in multiple species. Nat Methods 2016; 13(7):563-67; PMID:27214048; https://doi.org/10.1038/nmeth.3871
  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3):279-84; PMID:24463574; https://doi.org/10.1038/nbt.2808
  • Dahlman JE, Abudayyeh OO, Joung J, Gootenberg JS, Zhang F, Konermann S. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol 2015; 33(11):1159-61; PMID:26436575; https://doi.org/10.1038/nbt.3390
  • Kiani S, Chavez A, Tuttle M, Hall RN, Chari R, Ter-Ovanesyan D, Qian J, Pruitt BW, Beal J, Vora S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods 2015; 12(11):1051-4; PMID:26344044; https://doi.org/10.1038/nmeth.3580
  • Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y. Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer Cells. Science 2011; 333(6047):1307-11; PMID:21885784; https://doi.org/10.1126/science.1205527
  • Liu Y, Zeng Y, Liu L, Zhuang C, Fu X, Huang W, Cai Z. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Communications 2014; 5:5393; PMID:25373919; https://doi.org/10.1038/ncomms6393
  • Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 2015; 11(3):198-200; PMID:25664691; https://doi.org/10.1038/nchembio.1753
  • Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 2015; 22(2):169-74; PMID:25619936; https://doi.org/10.1016/j.chembiol.2014.12.011
  • Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 2015; 33(2):139-42; PMID:25643054; https://doi.org/10.1038/nbt.3149
  • Gao Y, Xiong X, Wong S, Charles EJ, Lim WA, Qi LS. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat Methods 2016; 13(12):1043-9; PMID:27776111; https://doi.org/10.1038/nmeth.4042
  • Marchisio MA, Stelling J. Automatic design of digital synthetic gene circuits. PLoS Comput Biol 2011; 7(2):e1001083; PMID:21399700; https://doi.org/10.1371/journal.pcbi.1001083
  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh JRJ, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561):481-5; PMID:26098369; https://doi.org/10.1038/nature14592
  • Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL, Bzdrenga J, Koonin EV, Charpentier E. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 2014; 42(4):2577-90; PMID:24270795; https://doi.org/10.1093/nar/gkt1074
  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3):759-71; PMID:26422227; https://doi.org/10.1016/j.cell.2015.09.038
  • Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016; 532(7600):517-21; PMID:27096362; https://doi.org/10.1038/nature17945
  • Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016, 532(7600):522-526; PMID:27096363; https://doi.org/10.1038/nature17944
  • Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, et al. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell 2016; 165(4):949-62; PMID:27114038; https://doi.org/10.1016/j.cell.2016.04.003
  • Li SY, Zhao GP, Wang J. C-Brick: A New Standard for Assembly of Biological Parts Using Cpf1. ACS Synth Biol 2016; 5(12):1383-1388; PMID:27294364; https://doi.org/10.1021/acssynbio.6b00114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.