1,211
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

The pre-mRNA retention and splicing complex controls expression of the Mediator subunit Med20

&
Pages 1411-1417 | Received 11 Nov 2016, Accepted 07 Feb 2017, Published online: 17 Mar 2017

References

  • Will CL, Lührmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011; 3: pii: a003707; PMID:21441581; https://doi.org/10.1101/cshperspect.a003707
  • Dziembowski A, Ventura AP, Rutz B, Caspary F, Faux C, Halgand F, Laprevote O, Seraphin B. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J 2004; 23:4847-56; PMID:15565172; https://doi.org/10.1038/sj.emboj.7600482
  • Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, Seraphin B. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res 2009; 37:129-43; PMID:19033360; https://doi.org/10.1093/nar/gkn894
  • Trowitzsch S, Weber G, Lührmann R, Wahl MC. An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex. J Biol Chem 2008; 283:32317-27; PMID:18809678; https://doi.org/10.1074/jbc.M804977200
  • Trowitzsch S, Weber G, Lührmann R, Wahl MC. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J Mol Biol 2009; 385:531-41; PMID:19010333; https://doi.org/10.1016/j.jmb.2008.10.087
  • Schneider C, Agafonov DE, Schmitzova J, Hartmuth K, Fabrizio P, Lührmann R. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3′ Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes. PLoS Genet 2015; 11:e1005539; PMID:26393790; https://doi.org/10.1371/journal.pgen.1005539
  • Wysoczanski P, Schneider C, Xiang S, Munari F, Trowitzsch S, Wahl MC, Lührmann R, Becker S, Zweckstetter M. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 2014; 21:911-8; PMID:25218446; https://doi.org/10.1038/nsmb.2889
  • Gottschalk A, Bartels C, Neubauer G, Lührmann R, Fabrizio P. A novel yeast U2 snRNP protein, Snu17p, is required for the first catalytic step of splicing and for progression of spliceosome assembly. Mol Cell Biol 2001; 21:3037-46; PMID:11287609; https://doi.org/10.1128/MCB.21.9.3037-3046.2001
  • Wang Q, He J, Lynn B, Rymond BC. Interactions of the yeast SF3b splicing factor. Mol Cell Biol 2005; 25:10745-54; PMID:16314500; https://doi.org/10.1128/MCB.25.24.10745-10754.2005
  • Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, Lührmann R. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 2009; 36:593-608; PMID:19941820; https://doi.org/10.1016/j.molcel.2009.09.040
  • Yan C, Wan R, Bai R, Huang G, Shi Y. Structure of a yeast activated spliceosome at 3.5 A resolution. Science 2016; 353:904-11; PMID:27445306; https://doi.org/10.1126/science.aag0291
  • Bessonov S, Anokhina M, Will CL, Urlaub H, Lührmann R. Isolation of an active step I spliceosome and composition of its RNP core. Nature 2008; 452:846-50; PMID:18322460; https://doi.org/10.1038/nature06842
  • Deckert J, Hartmuth K, Boehringer D, Behzadnia N, Will CL, Kastner B, Stark H, Urlaub H, Lührmann R. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 2006; 26:5528-43; PMID:16809785; https://doi.org/10.1128/MCB.00582-06
  • Clark TA, Sugnet CW, Ares M Jr. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 2002; 296:907-10; PMID:11988574; https://doi.org/10.1126/science.1069415
  • Khanna M, Van Bakel H, Tang X, Calarco JA, Babak T, Guo G, Emili A, Greenblatt JF, Hughes TR, Krogan NJ, et al. A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300. RNA 2009; 15:2174-85; PMID:19789211; https://doi.org/10.1261/rna.1790509
  • Scherrer FW Jr, Spingola M. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention. RNA 2006; 12:1361-72; PMID:16738408; https://doi.org/10.1261/rna.2276806
  • Spingola M, Armisen J, Ares M Jr. Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP protein Snu17p. Nucleic Acids Res 2004; 32:1242-50; PMID:14973223; https://doi.org/10.1093/nar/gkh281
  • Tuo S, Nakashima K, Pringle JR. Apparent defect in yeast bud-site selection due to a specific failure to splice the pre-mRNA of a regulator of cell-type-specific transcription. PLoS One 2012; 7:e47621; PMID:23118884; https://doi.org/10.1371/journal.pone.0047621
  • Schmidlin T, Kaeberlein M, Kudlow BA, MacKay V, Lockshon D, Kennedy BK. Single-gene deletions that restore mating competence to diploid yeast. FEMS Yeast Res 2008; 8:276-86; PMID:17995956; https://doi.org/10.1111/j.1567-1364.2007.00322.x
  • Zhou Y, Chen C, Johansson MJO. The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res 2013; 41:5669-78; PMID:23605039; https://doi.org/10.1093/nar/gkt269
  • He F, Peltz SW, Donahue JL, Rosbash M, Jacobson A. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1- mutant. Proc Natl Acad Sci USA 1993; 90:7034-8; PMID:8346213
  • He F, Li X, Spatrick P, Casillo R, Dong S, Jacobson A. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol Cell 2003; 12:1439-52; PMID:14690598; https://doi.org/10.1016/S1097-2765(03)00446-5
  • Rutz B, Seraphin B. A dual role for BBP/ScSF1 in nuclear pre-mRNA retention and splicing. EMBO J 2000; 19:1873-86; PMID:10775271; https://doi.org/10.1093/emboj/19.8.1873
  • Sayani S, Janis M, Lee CY, Toesca I, Chanfreau GF. Widespread impact of nonsense-mediated mRNA decay on the yeast intronome. Mol Cell 2008; 31:360-70; PMID:18691968; https://doi.org/10.1016/j.molcel.2008.07.005
  • Kervestin S, Jacobson A. NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 2012; 13:700-12; PMID:23072888; https://doi.org/10.1038/nrm3454
  • Ni L, Snyder M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 2001; 12:2147-70; PMID:11452010; https://doi.org/10.1091/mbc.12.7.2147
  • Johansson MJO, Byström AS. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA 2004; 10:712-9; PMID:15037780; https://doi.org/10.1261/rna.5198204
  • Kim YJ, Björklund S, Li Y, Sayre MH, Kornberg RD. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 1994; 77:599-608; PMID:8187178; https://doi.org/10.1016/0092-8674(94)90221-6
  • Nonet ML, Young RA. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 1989; 123:715-24; PMID:2693207
  • Allen BL, Taatjes DJ. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 2015; 16:155-66; PMID:25693131; https://doi.org/10.1038/nrm3951
  • Leeds P, Peltz SW, Jacobson A, Culbertson MR. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 1991; 5:2303-14; PMID:1748286; https://doi.org/10.1101/gad.5.12a.2303
  • Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 2004; 116:63-73; PMID:14718167; https://doi.org/10.1016/S0092-8674(03)01026-2
  • Palancade B, Zuccolo M, Loeillet S, Nicolas A, Doye V. Pml39, a novel protein of the nuclear periphery required for nuclear retention of improper messenger ribonucleoparticles. Mol Biol Cell 2005; 16:5258-68; PMID:16162818; https://doi.org/10.1091/mbc.E05-06-0527
  • Kawashima T, Pellegrini M, Chanfreau GF. Nonsense-mediated mRNA decay mutes the splicing defects of spliceosome component mutations. RNA 2009; 15:2236-47; PMID:19850912; https://doi.org/10.1261/rna.1736809
  • Amberg DC, Burke DJ, Strathern JN. Methods in Yeast Genetics. Cold Spring Harbor. N Y: Cold Spring Harbor Laboratory Press, 2005
  • Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998; 14:953-61; PMID:9717241; https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989; 122:19-27; PMID:2659436
  • Carlson M, Botstein D. Two differentially regulated mRNAs with different 5′ ends encode secreted with intracellular forms of yeast invertase. Cell 1982; 28:145-54; PMID:7039847; https://doi.org/10.1016/0092-8674(82)90384-1
  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene 1992; 110:119-22; PMID:1544568; https://doi.org/10.1016/0378-1119(92)90454-W
  • He F, Amrani N, Johansson MJO, Jacobson A. Chapter 6. Qualitative and quantitative assessment of the activity of the yeast nonsense-mediated mRNA decay pathway. Methods Enzymol 2008; 449:127-47; PMID:19215756; http:/dx.doi.org/10.1016/S0076-6879(08)02406-3
  • Johansson MJO. Determining if an mRNA is a substrate of nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Methods Mol Biol 2017; 1507:169-77; PMID:27832540; http:/dx.doi.org/10.1007/978-1-4939-6518-2_13
  • Johansson MJO, Jacobson A. Nonsense-mediated mRNA decay maintains translational fidelity by limiting magnesium uptake. Genes Dev 2010; 24:1491-5; PMID:20634315; https://doi.org/10.1101/gad.1930710