3,104
Views
25
CrossRef citations to date
0
Altmetric
Point of View

Antibodies specific for nucleic acid modifications

ORCID Icon & ORCID Icon
Pages 1089-1098 | Received 16 Dec 2016, Accepted 13 Feb 2017, Published online: 31 Mar 2017

References

  • Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 2013; 41:D262-7; PMID: 23118484; http://dx.doi.org/10.1093/nar/gks1007
  • Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. RNA modifications: what have we learned and where are we headed? Nat Rev Genet 2016; 17:365-72; PMID: 27140282; http://dx.doi.org/10.1038/nrg.2016.47
  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res 2011; 39:D195-201; PMID: 21071406; http://dx.doi.org/10.1093/nar/gkq1028
  • Alarcon CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519:482-5; PMID: 25799998; http://dx.doi.org/10.1038/nature14281
  • Gu J, Patton JR, Shimba S, Reddy R. Localization of modified nucleotides in Schizosaccharomyces pombe spliceosomal small nuclear RNAs: modified nucleotides are clustered in functionally important regions. RNA 1996; 2:909-18; PMID:8809017; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1369425/
  • Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 2015; 12:767-72; PMID: 26121403; http://dx.doi.org/10.1038/nmeth.3453
  • Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, Calonne E, Hassabi B, Putmans P, Awe S, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 2016; 351:282-5; PMID: 26816380; http://dx.doi.org/10.1126/science.aac5253
  • Ge J, Yu YT. RNA pseudouridylation: new insights into an old modification. Trends Biochem Sci 2013; 38:210-8; PMID: 23391857; http://dx.doi.org/10.1016/j.tibs.2013.01.002
  • Gilbert WV, Bell TA, Schaening C. Messenger RNA modifications: Form, distribution, and function. Science 2016; 352:1408-12; PMID: 27313037; http://dx.doi.org/10.1126/science.aad8711
  • Pan T. N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci 2013; 38:204-9; PMID: 23337769; http://dx.doi.org/10.1016/j.tibs.2012.12.006
  • Qiu S, Li W, Xiong H, Liu D, Bai Y, Wu K, Zhang X, Yang H, Ma K, Hou Y, et al. Single-cell RNA sequencing reveals dynamic changes in A-to-I RNA editome during early human embryogenesis. BMC Genomics 2016; 17:766; PMID: 27687780; http://dx.doi.org/10.1186/s12864-016-3115-2
  • Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017; 18:31-42; PMID: 27808276; http://dx.doi.org/10.1038/nrm.2016.132
  • Chen K, Zhao BS, He C. Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chem Biol 2016; 23:74-85; PMID: 26933737; http://dx.doi.org/10.1016/j.chembiol.2015.11.007
  • Hotchkiss RD. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 1948; 175:315-32; PMID:18873306
  • Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin 2015; 8:24; PMID: 26195987; http://dx.doi.org/10.1186/s13072-015-0016-6
  • Monk M, Boubelik M, Lehnert S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 1987; 99:371-82; PMID:3653008; http://dev.biologists.org/content/99/3/371.long
  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000; 10:475-8; PMID: 10801417; http://dx.doi.org/10.1016/S0960-9822(00)00448-6
  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature 2000; 403:501-2; PMID: 10676950; http://dx.doi.org/10.1038/35000656
  • Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009; 324:929-30; PMID: 19372393; http://dx.doi.org/10.1126/science.1169786
  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324:930-5; PMID: 19372391; http://dx.doi.org/10.1126/science.1170116
  • Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 2002; 241:172-82; PMID: 11784103; http://dx.doi.org/10.1006/dbio.2001.0501
  • Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nat Rev Mol Cell Biol 2009; 10:526-37; PMID: 19603040; http://dx.doi.org/10.1038/nrm2727
  • Tan L, Shi YG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012; 139:1895-902; PMID: 22569552; http://dx.doi.org/10.1242/dev.070771
  • Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol 2015; 13:7; PMID: 25637097; http://dx.doi.org/10.1186/s12915-015-0118-4
  • Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Burkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev 2015; 151:60-70; PMID: 25708826; http://dx.doi.org/10.1016/j.mad.2015.02.002
  • Ko M, An J, Rao A. DNA methylation and hydroxymethylation in hematologic differentiation and transformation. Curr Opin Cell Biol 2015; 37:91-101; PMID: 26595486; http://dx.doi.org/10.1016/j.ceb.2015.10.009
  • Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 2013; 14:215; PMID: 24286375; http://dx.doi.org/10.1186/gb4143
  • Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. J Genet Genomics 2014; 41:21-33; PMID: 24480744; http://dx.doi.org/10.1016/j.jgg.2013.10.002
  • Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 2012; 40:5023-33; PMID: 22344696; http://dx.doi.org/10.1093/nar/gks144
  • Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Doré LC, et al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 2015; 161:879-92; PMID: 25936837; http://dx.doi.org/10.1016/j.cell.2015.04.010
  • Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizabal-Corrales D, Hsu CH, Aravind L, He C, Shi Y. DNA Methylation on N6-Adenine in C. elegans. Cell 2015; 161:868-78; ; PMID:25936839; http://dx.doi.org/10.1016/j.cell.2015.04.005
  • Koziol MJ, Bradshaw CR, Allen GE, Costa AS, Frezza C, Gurdon JB. Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications. Nat Struct Mol Biol 2016; 23:24-30; PMID: 26689968; http://dx.doi.org/10.1038/nsmb.3145
  • Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J, et al. N6-methyladenine DNA modification in Drosophila. Cell 2015; 161:893-906; PMID: 25936838; http://dx.doi.org/10.1016/j.cell.2015.04.018
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A 1974; 71:3971-5; PMID: 4372599; http://dx.doi.org/10.1073/pnas.71.10.3971
  • Rottman F, Shatkin AJ, Perry RP. Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: possible implications for processing. Cell 1974; 3:197-9; PMID: 4373171; http://dx.doi.org/10.1016/0092-8674(74)90131-7
  • Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 1975; 4:379-86; PMID: 164293; http://dx.doi.org/10.1016/0092-8674(75)90158-0
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485:201-6; PMID: 22575960; http://dx.doi.org/10.1038/nature11112
  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012; 149:1635-46; PMID: 22608085; http://dx.doi.org/10.1016/j.cell.2012.05.003
  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505:117-20; PMID: 24284625; http://dx.doi.org/10.1038/nature12730
  • Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015; 518:560-4; PMID: 25719671; http://dx.doi.org/10.1038/nature14234
  • Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 2015; 29:1343-55; PMID: 26159994; http://dx.doi.org/10.1101/gad.262766.115
  • Choi J, Ieong KW, Demirci H, Chen J, Petrov A, Prabhakar A, O'Leary SE, Dominissini D, Rechavi G, Soltis SM, et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol 2016; 23:110-5; PMID: 26751643; http://dx.doi.org/10.1038/nsmb.3148
  • Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′ UTR m(6)A Promotes Cap-Independent Translation. Cell 2015; 163:999-1010; PMID: 26593424; http://dx.doi.org/10.1016/j.cell.2015.10.012
  • Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015; 161:1388-99; PMID: 26046440; http://dx.doi.org/10.1016/j.cell.2015.05.014
  • Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 2017; 541:371-5; PMID: 28002401; http://dx.doi.org/10.1038/nature21022
  • Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 2016; 530:441-6; PMID: 26863196; http://dx.doi.org/10.1038/nature16998
  • Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, Yi C. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 2016; 12:311-6; PMID: 26863410; http://dx.doi.org/10.1038/nchembio.2040
  • Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 2014; 515:143-6; PMID: 25192136; http://dx.doi.org/10.1038/nature13802
  • Li X, Zhu P, Ma S, Song J, Bai J, Sun F, Yi C. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 2015; 11:592-7; PMID: 26075521; http://dx.doi.org/10.1038/nchembio.1836
  • Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 2014; 159:148-62; PMID: 25219674; http://dx.doi.org/10.1016/j.cell.2014.08.028
  • Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 2004; 18:1-11; PMID: 14724175; http://dx.doi.org/10.1101/gad.1161904
  • Murphy K, Weaver C. Janeway's Immunobiology. New York: Garland Science, 2016:173-213.
  • Manivel V, Sahoo NC, Salunke DM, Rao KV. Maturation of an antibody response is governed by modulations in flexibility of the antigen-combining site. Immunity 2000; 13:611-20; PMID: 11114374; http://dx.doi.org/10.1016/S1074-7613(00)00061-3
  • Rock EP, Sibbald PR, Davis MM, Chien YH. CDR3 length in antigen-specific immune receptors. J Exp Med 1994; 179:323-8; PMID: 8270877; http://dx.doi.org/10.1084/jem.179.1.323
  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR, et al. Conformations of immunoglobulin hypervariable regions. Nature 1989; 342:877-83; PMID: 2687698; http://dx.doi.org/10.1038/342877a0
  • Xu JL, Davis MM. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 2000; 13:37-45; PMID: 10933393; http://dx.doi.org/10.1016/S1074-7613(00)00006-6
  • Kodangattil S, Huard C, Ross C, Li J, Gao H, Mascioni A, Hodawadekar S, Naik S, Min-debartolo J, Visintin A, et al. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing. MAbs 2014; 6:628-36; PMID: 24481222; http://dx.doi.org/10.4161/mabs.28059
  • Zhu W, Yu GL. Rabbit Hybridoma. In: An Z, ed. Therapeutic Monoclonal Antibodies: From Bench to Clinic John Wiley and Sons, 2009:151-68; http://dx.doi.org/10.1002/9780470485408
  • Davies DR, Padlan EA, Sheriff S. Antibody-antigen complexes. Annu Rev Biochem 1990; 59:439-73; PMID: 2197980; http://dx.doi.org/10.1146/annurev.bi.59.070190.002255
  • Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM. SAbDab: the structural antibody database. Nucleic Acids Res 2014; 42:D1140-6; PMID: 24214988; http://dx.doi.org/10.1093/nar/gkt1043
  • Almagro JC. Identification of differences in the specificity-determining residues of antibodies that recognize antigens of different size: implications for the rational design of antibody repertoires. J Mol Recognit 2004; 17:132-43; PMID: 15027033; http://dx.doi.org/10.1002/jmr.659
  • Raghunathan G, Smart J, Williams J, Almagro JC. Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens. J Mol Recognit 2012; 25:103-13; PMID: 22407974; http://dx.doi.org/10.1002/jmr.2158
  • Finlay WJ, Almagro JC. Natural and man-made V-gene repertoires for antibody discovery. Front Immunol 2012; 3:342. PMID: 23162556; http://dx.doi.org/10.3389/fimmu.2012.00342
  • Erkes DA, Selvan SR. Hapten-induced contact hypersensitivity, autoimmune reactions, and tumor regression: plausibility of mediating antitumor immunity. J Immunol Res 2014; 2014:175265; PMID: 24949488; http://dx.doi.org/10.1155/2014/175265
  • Garcia C, Reinherz E, R. S, Wilson I. Antigen Recognition by B-cell and T-cell receptors. In: Murphy K, Weaver C, eds. Janeway's Immunobiology. New York: Garland Sciences, 2016:139-73.
  • Krishnan MR, Jou NT, Marion TN. Correlation between the amino acid position of arginine in VH-CDR3 and specificity for native DNA among autoimmune antibodies. J Immunol 1996; 157:2430-9; PMID:8805642; http://www.jimmunol.org/content/157/6/2430.long
  • Munns TW, Liszewski MK, Tellam JT, Ebling FM, Hahn BH. Antibody-nucleic acid complexes. Identification of antigenic determinant of a murine monoclonal antibody specific for single-stranded nucleic acids. Biochemistry 1982; 21:2929-36; PMID: 6179538; http://dx.doi.org/10.1021/bi00541a019
  • Radic MZ, Mackle J, Erikson J, Mol C, Anderson WF, Weigert M. Residues that mediate DNA binding of autoimmune antibodies. J Immunol 1993; 150:4966-77. PMID: 8496598.
  • Reynaud C, Bruno C, Boullanger P, Grange J, Barbesti S, Niveleau A. Monitoring of urinary excretion of modified nucleosides in cancer patients using a set of six monoclonal antibodies. Cancer Lett 1992; 61:255-62; PMID: 1739950; http://dx.doi.org/10.1016/0304-3835(92)90296-8
  • Plescia OJ, Braun W. Nucleic acids as antigens. Adv Immunol 1967; 6:231-52. PMID: 4860247.
  • Di Pietro SM, Centeno JM, Cerutti ML, Lodeiro MF, Ferreiro DU, Alonso LG, Schwarz FP, Goldbaum FA, de Prat-Gay G. Specific antibody - DNA interaction: A novel strategy for fight dna recognition. Biochemistry 2003; 42:6218-27; PMID: 12755625; http://dx.doi.org/10.1021/bi026866u
  • Stollar BD. Antibodies to DNA. CRC Crit Rev Biochem 1986; 20:1-36; PMID: 3514122; http://dx.doi.org/10.3109/10409238609115899
  • Anderson WF, Cygler M, Braun RP, Lee JS. Antibodies to DNA. Bioessays 1988; 8:69-74; PMID: 3282507; http://dx.doi.org/10.1002/bies.950080206
  • Rekvig OP, Andreassen K, Moens U. Antibodies to DNA–towards an understanding of their origin and pathophysiological impact in systemic lupus erythematosus. Scand J Rheumatol 1998; 27:1-6. PMID: 9506871.
  • Munns TW, Liszewski MK, Sims HF. Characterization of antibodies specific for N6-methyladenosine and for 7-methylguanosine. Biochemistry 1977; 16:2163-8; PMID: 861202; http://dx.doi.org/10.1021/bi00629a019
  • Munns TW, Liszewski MK, Oberst RJ, Sims HF. Antibody nucleic acid complexes. Immunospecific retention of N6-methyladenosine-containing transfer ribonucleic acid. Biochemistry 1978; 17:2573-8; PMID: 354691; http://dx.doi.org/10.1021/bi00606a018
  • Chandler LA, Jones PA. Hypomethylation of DNA in the regulation of gene expression. Dev Biol (N Y 1985) 1988; 5:335-49. PMID: 2481475.
  • Razin A, Riggs AD. DNA methylation and gene function. Science 1980; 210:604-10; PMID: 6254144; http://dx.doi.org/10.1126/science.6254144
  • Erlanger BF, Beiser SM. Antibodies Specific for Ribonucleosides and Ribonucleotides and Their Reaction with DNA. Proc Natl Acad Sci U S A 1964; 52:68-74; PMID: 14192660; http://dx.doi.org/10.1073/pnas.52.1.68
  • Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T, et al. High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl 2015; 54:1587-90; PMID: 25491922; http://dx.doi.org/10.1002/anie.201410647
  • Achwal CW, Iyer CA, Chandra HS. Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS Lett 1983; 158:353-8; PMID: 6409666; http://dx.doi.org/10.1016/0014-5793(83)80612-7
  • Sano H, Royer HD, Sager R. Identification of 5-methylcytosine in DNA fragments immobilized on nitrocellulose paper. Proc Natl Acad Sci U S A 1980; 77:3581-5; PMID: 6251470; http://dx.doi.org/10.1073/pnas.77.6.3581
  • Itoh K, Mizugaki M, Ishida N. Preparation of a monoclonal antibody specific for 1-methyladenosine and its application for the detection of elevated levels of 1-methyladenosine in urines from cancer patients. Jpn J Cancer Res 1988; 79:1130-8; PMID: 3143701; http://dx.doi.org/10.1111/j.1349-7006.1988.tb01536.x
  • Apple RJ, Domen PL, Muckerheide A, Michael JG. Cationization of protein antigens. IV. Increased antigen uptake by antigen-presenting cells. J Immunol 1988; 140:3290-5. PMID: 3258879.
  • Muckerheide A, Domen PL, Michael JG. Cationization of protein antigens. II. Alteration of regulatory properties. J Immunol 1987; 138:2800-4. PMID: 3494770.
  • Muckerheide A, Apple RJ, Pesce AJ, Michael JG. Cationization of protein antigens. I. Alteration of immunogenic properties. J Immunol 1987; 138:833-7. PMID: 2433331.
  • Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 2005; 127:210-6; PMID: 15631470; http://dx.doi.org/10.1021/ja0471525
  • Busby M, Xue C, Li C, Farjoun Y, Gienger E, Yofe I, Gladden A, Epstein CB, Cornett EM, Rothbart SB, et al. Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq. Epigenetics Chromatin 2016; 9:49; PMID: 27826357; http://dx.doi.org/10.1186/s13072-016-0100-6
  • Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 2005; 46:258-68; PMID: 15953833; http://dx.doi.org/10.1093/ilar.46.3.258
  • Greenfield EA. Generating Monoclonal Antibodies. In: Greenfield EA, ed. Antibodies - A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2014:201-37.
  • Spieker-Polet H, Sethupathi P, Yam PC, Knight KL. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci U S A 1995; 92:9348-52; PMID: 7568130; http://dx.doi.org/10.1073/pnas.92.20.9348
  • Mizugaki M, Itoh K, Yamaguchi T, Ishiwata S, Hishinuma T, Nozaki S, Ishida N. Preparation of a monoclonal antibody specific for 5-methyl-2′-deoxycytidine and its application for the detection of DNA methylation levels in human peripheral blood cells. Biol Pharm Bull 1996; 19:1537-40; PMID: 8996634; http://dx.doi.org/10.1248/bpb.19.1537
  • Ohshima M, Tadakuma T, Hayashi H, Inoue K, Itoh K. Generation of a recombinant single-chain variable fragment (scFv) targeting 5-methyl-2′-deoxycytidine. J Biochem 2010; 147:135-41; PMID: 19815683; http://dx.doi.org/10.1093/jb/mvp151
  • Pleiner T, Bates M, Trakhanov S, Lee CT, Schliep JE, Chug H, Böhning M, Stark H, Urlaub H, Görlich D. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. Elife 2015; 4:e11349; PMID: 26633879; http://dx.doi.org/10.7554/eLife.11349
  • Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 2011; 16:3675-700; PMID: 21540796; http://dx.doi.org/10.3390/molecules16053675
  • Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D.. Antibody validation. Biotechniques 2010; 48:197-209; PMID: 20359301; http://dx.doi.org/10.2144/000113382
  • O'Kennedy RJ, Reading CL. Rapid simple cell suspension enzyme-linked immunosorbent assay to demonstrate and measure antibody binding. Analyst 1990; 115:1145-6; PMID: 2256557; http://dx.doi.org/10.1039/an9901501145
  • Itoh K, Mizugaki M, Ishida N. Detection of elevated amounts of urinary pseudouridine in cancer patients by use of a monoclonal antibody. Clin Chim Acta 1989; 181:305-15; PMID: 2758683; http://dx.doi.org/10.1016/0009-8981(89)90236-2
  • Mishima E, Jinno D, Akiyama Y, Itoh K, Nankumo S, Shima H, Kikuchi K, Takeuchi Y, Elkordy A, Suzuki T, et al. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides. PLoS One 2015; 10:e0143756; PMID: 26606401; http://dx.doi.org/10.1371/journal.pone.0143756
  • Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija R, Ruvkun G, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013; 155:1409-21; PMID: 24269006; http://dx.doi.org/10.1016/j.cell.2013.10.047
  • Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D'Souza Z, Nakayama M, Matsuda M, Turp A, Ndjetehe E, et al. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat Cell Biol 2016; 18:225-33; PMID: 26751286; http://dx.doi.org/10.1038/ncb3296
  • Gerlitz G, Bustin M. Efficient cell migration requires global chromatin condensation. J Cell Sci 2010; 123:2207-17; PMID: 20530575; http://dx.doi.org/10.1242/jcs.058271
  • Sakai Y, Suetake I, Itoh K, Mizugaki M, Tajima S, Yamashina S. Expression of DNA methyltransferase (Dnmt1) in testicular germ cells during development of mouse embryo. Cell Struct Funct 2001; 26:685-91; PMID: 11942627; http://dx.doi.org/10.1247/csf.26.685
  • Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011; 473:398-402; PMID: 21460836; http://dx.doi.org/10.1038/nature10008
  • Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 2010; 38:e125; PMID: 20371518; http://dx.doi.org/10.1093/nar/gkq223
  • Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, Arand J, Nakano T, Reik W, Walter J. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2011; 2:241; PMID: 21407207; http://dx.doi.org/10.1038/ncomms1240
  • Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 2011; 473:394-7; PMID: 21552279; http://dx.doi.org/10.1038/nature10102
  • Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 2011; 25:679-84; PMID: 21460036; http://dx.doi.org/10.1101/gad.2036011
  • Masuda M, Nishihira T, Itoh K, Mizugaki M, Ishida N, Mori S. An immunohistochemical analysis for cancer of the esophagus using monoclonal antibodies specific for modified nucleosides. Cancer 1993; 72:3571-8; PMID: 8252470; http://dx.doi.org/10.1002/1097-0142(19931215)72:12%3c3571::AID-CNCR2820721205%3e3.0.CO;2-9
  • Mishima E, Inoue C, Saigusa D, Inoue R, Ito K, Suzuki Y, Jinno D, Tsukui Y, Akamatsu Y, Araki M, et al. Conformational change in transfer RNA is an early indicator of acute cellular damage. J Am Soc Nephrol 2014; 25:2316-26; PMID: 24833129; http://dx.doi.org/10.1681/ASN.2013091001
  • Bodi Z, Button JD, Grierson D, Fray RG. Yeast targets for mRNA methylation. Nucleic Acids Res 2010; 38:5327-35; PMID: 20421205; http://dx.doi.org/10.1093/nar/gkq266
  • Bochnig P, Reuter R, Bringmann P, Luhrmann R. A monoclonal antibody against 2,2,7-trimethylguanosine that reacts with intact, class U, small nuclear ribonucleoproteins as well as with 7-methylguanosine-capped RNAs. Eur J Biochem 1987; 168:461-7; PMID: 2959477; http://dx.doi.org/10.1111/j.1432-1033.1987.tb13439.x