1,285
Views
3
CrossRef citations to date
0
Altmetric
Point Of View

Expanding the repertoire of deadenylases

, , , &
Pages 1320-1325 | Received 18 Jan 2017, Accepted 23 Feb 2017, Published online: 31 Mar 2017

References

  • Wennekamp S, Mesecke S, Nédélec F, Hiiragi T. A self-organization framework for symmetry breaking in the mammalian embryo. Nat Rev Mol Cell Biol 2013; 14(7):452-459; PMID:23778971; https://doi.org/10.1038/nrm3602
  • Rossant J, Tam PP. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 2017; 20(1):18-28; PMID:28061351; https://doi.org/10.1016/j.stem.2016.12.004
  • Eckmann CR, Rammelt C, Wahle E. Control of poly(A) tail length. Wiley Interdiscip Rev RNA 2011; 2(3):348-361; PMID:21957022; https://doi.org/10.1002/wrna.56
  • Richter JD, Lasko P. Translational control in oocyte development. Cold Spring Harb Perspect Biol 2011; 3(9):a002758; PMID:21690213; https://doi.org/10.1101/cshperspect.a002758
  • Harnisch C, Moritz B, Rammelt C, Temme C, Wahle E. Activity and function of deadenylases. Enzymes 2012; 31:181-211; PMID:27166446; https://doi.org/10.1016/B978-0-12-404740-2.00009-4
  • Yan YB. Deadenylation: enzymes, regulation, and functional implications. Wiley Interdiscip Rev RNA 2014; 5(3):421-443; PMID:24523229; https://doi.org/10.1002/wrna.1221
  • Goldstrohm AC, Wickens M. Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 2008; 9(4):337-344; PMID:18334997; https://doi.org/10.1038/nrm2370
  • Mittal S, Aslam A, Doidge R, Medica R, Winkler GS. The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Mol Biol Cell 2011; 22(6):748-758; PMID:21233283; https://doi.org/10.1091/mbc.E10-11-0898
  • Barckmann B, Simonelig M. Control of maternal mRNA stability in germ cells and early embryos. Biochim Biophys Acta 2013; 1829(6-7):714-724; PMID:23298642; https://doi.org/10.1016/j.bbagrm.2012.12.011
  • Tummala H, Walne A, Collopy L, Cardoso S, de la Fuente J, Lawson S, Powell J, Cooper N, Foster A, Mohammed S, et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J Clin Invest 2015; 125(5):2151-2160; PMID:25893599; https://doi.org/10.1172/JCI78963
  • Maragozidis P, Papanastasi E, Scutelnic D, Totomi A, Kokkori I, Zarogiannis SG, Kerenidi T, Gourgoulianis KI, Balatsos NA. Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression. Mol Cancer 2015; 14:187; PMID:26541675; https://doi.org/10.1186/s12943-015-0457-3
  • Rorbach J, Nicholls TJ, Minczuk M. PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res 2011; 39(17):7750-7763; PMID:21666256; https://doi.org/10.1093/nar/gkr470
  • Yamashita A, Chang TC, Yamashita Y, Zhu W, Zhong Z, Chen CY, Shyu AB. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 2005; 12(12):1054-1063; PMID:16284618; https://doi.org/10.1038/nsmb1016
  • Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 2012; 9(5):563–76; PMID:22614827; https://doi.org/10.4161/rna.20231
  • Ivshina M, Lasko P, Richter JD. Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annu Rev Cell Dev Biol 2014; 30:393-415; PMID:25068488; https://doi.org/10.1146/annurev-cellbio-101011-155831
  • Mauxion F, Chen CY, Séraphin B, Shyu AB. BTG/TOB factors impact deadenylases. Trends Biochem Sci 2009; 34(12):640-647; PMID:19828319; https://doi.org/10.1016/j.tibs.2009.07.008
  • Stupfler B, Birck C, Séraphin B, Mauxion F. BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 2016; 7:10811; PMID:26912148; https://doi.org/10.1038/ncomms10811
  • Yu C, Ji SY, Sha QQ, Dang Y, Zhou JJ, Zhang YL, Liu Y, Wang ZW, Hu B, Sun QY, et al. BTG4 is a meiotic cell cycle-coupledmaternal-zygotic-transition licensing factor in oocytes. Nat Struct Mol Biol 2016; 23(5):387-394; PMID:27065194; https://doi.org/10.1038/nsmb.3204
  • Liu Y, Lu X, Shi J, Yu X, Zhang X, Zhu K, Yi Z, Duan E, Li L. BTG4 is a keyregulator for maternal mRNA clearance during mouse early embryogenesis. J Mol Cell Biol 2016; 8(4):366-368; PMID:27190313; https://doi.org/10.1093/jmcb/mjw023
  • Ye J, Blelloch R. Regulation of pluripotency by RNA binding proteins. Cell Stem Cell 2015; 15(3):271-280; PMID:25192462; https://doi.org/10.1016/j.stem.2014.08.010
  • Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014; 508(7494):66-71; PMID:24476825; https://doi.org/10.1038/nature13007
  • Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of Poly(A) tail and translation during the somatic cell cycle. Mol Cell 2016; 62(3):462-471; PMID:27153541; https://doi.org/10.1016/j.molcel.2016.04.007
  • Virtanen A, Henriksson N, Nilsson P, Nissbeck M. Poly(A)-specific ribonuclease (PARN): an allosterically regulated, processive and mRNA cap-interacting deadenylase. Crit Rev Biochem Mol Biol 2013; 48(2):192-209; PMID:23496118; https://doi.org/10.3109/10409238.2013.771132
  • Copeland PR, Wormington M. The mechanism and regulation of deadenylation: identification and characterization of Xenopus PARN. RNA 2001; 7(6):875-886; PMID:11424938; https://doi.org/10.1017/S1355838201010020
  • Berndt H, Harnisch C, Rammelt C, Stöhr N, Zirkel A, Dohm JC, Himmelbauer H, Tavanez JP, Hüttelmaier S, Wahle E. Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA 2012; 18(5):958-972; PMID:22442037; https://doi.org/10.1261/rna.032292.112
  • Stuart BD, Choi J, Zaidi S, Xing C, Holohan B, Chen R, Choi M, Dharwadkar P, Torres F, Girod CE, et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet 2015; 47(5):512-517; PMID:25848748; https://doi.org/10.1038/ng.3278
  • Moon DH, Segal M, Boyraz B, Guinan E, Hofmann I, Cahan P, Tai AK, Agarwal S. Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component. Nat Genet 2015; 47(12):1482-1488; PMID:26482878; https://doi.org/10.1038/ng.3423
  • Zhang X, Devany E, Murphy MR, Glazman G, Persaud M, Kleiman FE. PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Res 2015; 43(22):10925-10938; PMID:26400160; https://doi.org/10.1093/nar/gkv959
  • Yoda M, Cifuentes D, Izumi N, Sakaguchi Y, Suzuki T, Giraldez AJ, Tomari Y. Poly(A)-specific ribonuclease mediates 3′-end trimming of Argonaute2-cleaved precursor microRNAs. Cell Rep 2013; 5(3):715-726; PMID:24209750; https://doi.org/10.1016/j.celrep.2013.09.029
  • Balatsos NA, Maragozidis P, Anastasakis D, Stathopoulos C. Modulation of poly(A)-specific ribonuclease (PARN): current knowledge and perspectives. Curr Med Chem 2012; 19(28):4838-4849; PMID:22834816; https://doi.org/10.2174/092986712803341539
  • Tang W, Tu S, Lee HC, Weng Z, Mello CC. The RNase PARN-1 Trims piRNA 3′ ends to promote transcriptome surveillance in C. elegans. Cell 2016; 164(5):974-984; PMID:26919432; https://doi.org/10.1016/j.cell.2016.02.008
  • Weick EM, Miska EA. piRNAs: from biogenesis to function. Development 2014; 141(18):3458-3471; PMID:25183868; https://doi.org/10.1242/dev.094037
  • Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 2008; 31(6):785-799; PMID:18922463; https://doi.org/10.1016/j.molcel.2008.09.003
  • Ishiuchi T, Torres-Padilla ME. LINEing germ and embryonic stem cells' silencing of retrotransposons. Genes Dev 2014; 28(13):1381-1383; PMID:24990961; https://doi.org/10.1101/gad.246462.114
  • Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505(7483):353-359; PMID:24429634; https://doi.org/10.1038/nature12987
  • Fu Q, Wang PJ. Mammalian piRNAs: Biogenesis, function, and mysteries. Spermatogenesis 2014; 4:e27889; PMID:25077039; https://doi.org/10.4161/spmg.27889
  • Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, Chuva de Sousa Lopes SM, van der Westerlaken LA, Zischler H, Butter F, Roelen BA, et al. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep 2015; 10(12):2069-2082; PMID:25818294; https://doi.org/10.1016/j.celrep.2015.02.062
  • Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou Y, Kang JY, Wang X, Li H, Hua MM, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 2014; 24(6):680-700; PMID:24787618; https://doi.org/10.1038/cr.2014.41
  • Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 2010 Oct; 467(7319):1128-1132; PMID:20953170; https://doi.org/10.1038/nature09465
  • Vourekas A, Zheng Q, Alexiou P, Maragkakis M, Kirino Y, Gregory BD, Mourelatos Z. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat Struct Mol Biol 2012; 19(8):773-781; PMID:22842725; https://doi.org/10.1038/nsmb.2347
  • Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP. Early origins and evolution of microRNAs andPiwi-interacting RNAs in animals. Nature 2008; 455(7217):1193-1197; PMID:18830242; https://doi.org/10.1038/nature07415
  • Iwasaki YW, Siomi MC, Siomi H. PIWI-Interacting RNA: Its Biogenesis and Functions. Annu Rev Biochem 2015; 84:405-433; PMID:25747396; https://doi.org/10.1146/annurev-biochem-060614-034258
  • Izumi N, Shoji K, Sakaguchi Y, Honda S, Kirino Y, Suzuki T, Katsuma S, Tomari Y. Identification and Functional Analysis of the Pre-piRNA 3′ Trimmer in Silkworms. Cell 2016; 164(5):962-973; PMID:26919431; https://doi.org/10.1016/j.cell.2016.01.008
  • Anastasakis D, Skeparnias I, Shaukat AN, Grafanaki K, Kanellou A, Taraviras S, Papachristou DJ, Papakyriakou A, Stathopoulos C. Mammalian PNLDC1 is a novel poly(A) specific exonuclease with discrete expression during early development. Nucleic Acids Res 2016; 44(18):8908-8920; PMID:27515512; https://doi.org/10.1093/nar/gkw709
  • Hayashi R, Schnabl J, Handler D, Mohn F, Ameres SL, Brennecke J. Genetic and mechanistic diversity of piRNA 3′-end formation. Nature 2016; 539(7630):588-592; PMID:27851737; https://doi.org/10.1038/nature20162
  • Han BW, Hung JH, Weng Z, Zamore PD, Ameres SL. The 3′-to-5′ exoribonuclease Nibbler shapes the 3′ ends of microRNAs bound to Drosophila Argonaute1. Curr Biol 2011; 21(22):1878-1887; PMID:22055293; https://doi.org/10.1016/j.cub.2011.09.034
  • Liu N, Abe M, Sabin LR, Hendriks GJ, Naqvi AS, Yu Z, Cherry S, Bonini NM. The exoribonuclease Nibbler controls 3′ end processing of microRNAs in Drosophila. Curr Biol 2011; 21(22):1888-1893; PMID:22055292; https://doi.org/10.1016/j.cub.2011.10.006
  • Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz MJ, et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 2009; 36(2):231-244; PMID:19800275; https://doi.org/10.1016/j.molcel.2009.09.020
  • Balatsos NA, Vlachakis D, Maragozidis P, Manta S, Anastasakis D, Kyritsis A, Vlassi M, Komiotis D, Stathopoulos C. Competitive inhibition of human poly(A)-specific ribonuclease (PARN) by synthetic fluoro-pyranosyl nucleosides. Biochemistry 2009; 48(26):6044-6051; PMID:19472977; https://doi.org/10.1021/bi900236k
  • Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1(2):205-218; PMID:25512877; https://doi.org/10.1093/nsr/nwu014
  • Tessema M, Willink R, Do K, Yu YY, Yu W, Machida EO, Brock M, Van Neste L, Stidley CA, Baylin SB, et al. Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Res 2008; 68(6):1707-1714; https://doi.org/10.1158/0008-5472.CAN-07-6325
  • Hlady RA, Novakova S, Opavska J, Klinkebiel D, Peters SL, Bies J, Hannah J, Iqbal J, Anderson KM, Siebler HM et al. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest 2012; 122(1):163-177; PMID:22133874; https://doi.org/10.1172/JCI57292
  • Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3):247-257; PMID:10555141; https://doi.org/10.1016/S0092-8674(00)81656-6
  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416(6880):552-556; PMID:11932749; https://doi.org/10.1038/416552a
  • Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 2009; 23(15):1749-1762; PMID:19584108; https://doi.org/10.1101/gad.1814809
  • Chen C, Jin J, James DA, Adams Cioaba MA, Park JG, Guo Y, Tenaglia E, Xu C, Gish G, Min J, et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc Natl Acad Sci U S A 2009; 106(48):20336-20341; PMID:19918066; https://doi.org/10.1073/pnas.0911640106
  • Wang H, Morita M, Yang X, Suzuki T, Yang W, Wang J, Ito K, Wang Q, Zhao C, Bartlam M, et al. Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity. EMBO J 2010; 29(15):2566-2576; PMID:20628353; https://doi.org/10.1038/emboj.2010.152
  • Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl Sci Rev 2014; 1(2):205-218; PMID:25512877; https://doi.org/10.1093/nsr/nwu014
  • He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 2009; 25:377-406; PMID:19575646; https://doi.org/10.1146/annurev.cellbio.042308.113248
  • Martello G, Smith A. The nature of embryonic stem cells. Annu Rev Cell Dev Biol 2014; 30:647-675; PMID:25288119; https://doi.org/10.1146/annurev-cellbio-100913-013116

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.