4,104
Views
46
CrossRef citations to date
0
Altmetric
Review

A fly view on the roles and mechanisms of the m6A mRNA modification and its players

, ORCID Icon &
Pages 1232-1240 | Received 20 Dec 2016, Accepted 10 Mar 2017, Published online: 27 Apr 2017

References

  • Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdisciplinary Rev RNA 2011; 2:611; PMID:21823225; http://dx.doi.org/10.1002/wrna.79
  • Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 2013; 41:D262; PMID:3531130; http://dx.doi.org/10.1093/nar/gks1007
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485:201; PMID:22575960; http://dx.doi.org/10.1038/nature11112
  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012; 149:1635; PMID:3383396; http://dx.doi.org/10.1016/j.cell.2012.05.003
  • Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 2015; 12:767;PMID:4487409; http://dx.doi.org/10.1038/nmeth.3453
  • Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. Rna 1997; 3:1233; PMID:1369564
  • Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014; 10:93; PMID:3911877; http://dx.doi.org/10.1038/nchembio.1432
  • Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24:177; PMID:3915904; http://dx.doi.org/10.1038/cr.2014.3
  • Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Reports 2014; 8:284; PMID:4142486; http://dx.doi.org/10.1016/j.celrep.2014.05.048
  • Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 2014; 16:191; PMID:24394384; http://dx.doi.org/10.1038/ncb2902
  • Sledz P, Jinek M. Structural insights into the molecular mechanism of the m(6)A writer complex. Elife 2016; 5:e18434; PMID:5023411; http://dx.doi.org/10.7554/eLife.18434
  • Lichinchi G, Gao S, Saletore Y, Gonzalez GM, Bansal V, Wang Y, Mason CE, Rana TM. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 2016; 1:16011; PMID:27572442; http://dx.doi.org/10.1038/nmicrobiol.2016.11
  • Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 2016; 534:575; PMID:27281194; http://dx.doi.org/10.1038/nature18298
  • Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum Mol Genetics 2000; 9:2231; PMID:24100041; http://dx.doi.org/10.1074/jbc.M113.500397
  • Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, Jaffrey SR. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 2016; 537:369; PMID:27602518; http://dx.doi.org/10.1038/nature19342
  • Wang Y, Zhao JC. Update: Mechanisms Underlying N6-Methyladenosine Modification of Eukaryotic mRNA. Trends Genetics: TIG 2016; 32:763; PMID:5123927; http://dx.doi.org/10.1016/j.tig.2016.09.006
  • Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2016; 1:31; PMID:27808276; http://dx.doi.org/10.1038/nrm.2016.132
  • Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FH, et al. The YTH domain is a novel RNA binding domain. J Biol Chem 2010; 285:14701; PMID:2863249; http://dx.doi.org/10.1074/jbc.M110.104711
  • Theler D, Dominguez C, Blatter M, Boudet J, Allain FH. Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res 2014; 42:13911; PMID:4267619; http://dx.doi.org/10.1093/nar/gku1116
  • Dezi V, Ivanov C, Haussmann IU, Soller M. Nucleotide modifications in messenger RNA and their role in development and disease. Biochem Soc Transactions 2016; 44:1385; PMID:27911721; http://dx.doi.org/10.1042/BST20160110
  • Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N, Fray RG, Soller M. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 2016; 540:301; PMID:27919081; http://dx.doi.org/10.1038/nature20577
  • Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M, et al. m6A modulates neuronal functions and sex determination in Drosophila. Nature 2016; 540:242; PMID:27919077; http://dx.doi.org/10.1038/nature20568
  • Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC, Rüther U. Inactivation of the Fto gene protects from obesity. Nature 2009; 458:894; PMID:19234441; http://dx.doi.org/10.1038/nature07848
  • Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 2013; 49:18; PMID:3646334; http://dx.doi.org/10.1016/j.molcel.2012.10.015
  • Zou S, Toh JD, Wong KH, Gao YG, Hong W, Woon EC. N(6)-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Scientific Reports 2016; 6:25677; PMID:4860565; http://dx.doi.org/10.1038/srep25677
  • Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 2017; 541:371; PMID:28002401; http://dx.doi.org/10.1038/nature21022
  • Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 1994; 269:17697; PMID:8021282
  • Bujnicki JM, Feder M, Radlinska M, Blumenthal RM. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evolution 2002; 55:431; PMID:12355263; http://dx.doi.org/10.1007/s00239-002-2339-8
  • Shah JC, Clancy MJ. IME4, a gene that mediates MAT and nutritional control of meiosis in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:1078; PMID:369539; http://dx.doi.org/10.1128/MCB.12.3.1078
  • Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M, Fray RG. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 2008; 20:1278;PMID:2438467; http://dx.doi.org/10.1105/tpc.108.058883
  • Bodi Z, Zhong S, Mehra S, Song J, Graham N, Li H, May S, Fray RG. Adenosine Methylation in Arabidopsis mRNA is associated with the 3′ End and reduced levels cause developmental defects. Frontiers Plant Sci 2012; 3:48; PMID:22639649; http://dx.doi.org/10.3389/fpls.2012.00048
  • Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor Y, et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 2015; 347:1002; PMID:25569111; http://dx.doi.org/10.1126/science.1261417
  • Schutt C, Nothiger R. Structure, function and evolution of sex-determining systems in Dipteran insects. Development 2000; 127:667; PMID:10648226
  • Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A Methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 2016; 62:335; PMID:4860043; http://dx.doi.org/10.1016/j.molcel.2016.03.021
  • Kurihara LJ, Stewart BG, Gammie AE, Rose MD. Kar4p, a karyogamy-specific component of the yeast pheromone response pathway. Mol Cell Biol 1996; 16:3990; PMID:231395; http://dx.doi.org/10.1128/MCB.16.8.3990
  • Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 2013; 288:33292; PMID:3829175; http://dx.doi.org/10.1074/jbc.M113.500397
  • Larsson SH, Charlieu JP, Miyagawa K, Engelkamp D, Rassoulzadegan M, Ross A, Cuzin F, van Heyningen V, Hastie ND. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 1995; 81:391; PMID:7736591
  • Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001; 106:319; PMID:11509181
  • Horiuchi K, Umetani M, Minami T, Okayama H, Takada S, Yamamoto M, Aburatani H, Reid PC, Housman DE, Hamakubo T, et al. Wilms' tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc Natl Acad Sci U S A 2006; 103:17278; PMID:1634838; http://dx.doi.org/10.1073/pnas.0608357103
  • Penn JK, Graham P, Deshpande G, Calhoun G, Chaouki AS, Salz HK, Schedl P. Functioning of the Drosophila Wilms'-tumor-1-associated protein homolog, Fl(2)d, in Sex-lethal-dependent alternative splicing. Genetics 2008; 178:737; http://dx.doi.org/10.1534/genetics.107.081679
  • Granadino B, Campuzano S, Sanchez L. The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO J 1990; 9:2597; PMID:552292
  • Granadino B, Penalva LO, Sanchez L. The gene fl(2)d is needed for the sex-specific splicing of transformer pre-mRNA but not for double-sex pre-mRNA in Drosophila melanogaster. Mol General Genetics: MGG 1996; 253:26; PMID:9003283; http://dx.doi.org/10.1007/s004380050292
  • Penalva LO, Ruiz MF, Ortega A, Granadino B, Vicente L, Segarra C, Valcárcel J, Sánchez L. The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics 2000; 155:129; PMID:1461084
  • Anderson AM, Weasner BP, Weasner BM, Kumar JP. The Drosophila Wilms Tumor 1-Associating Protein (WTAP) homolog is required for eye development. Dev Biol 2014; 390:170; PMID:4063124; http://dx.doi.org/10.1016/j.ydbio.2014.03.012
  • Hilfiker A, Amrein H, Dubendorfer A, Schneiter R, Nothiger R. The gene virilizer is required for female-specific splicing controlled by Sxl, the master gene for sexual development in Drosophila. Development 1995; 121:4017; PMID:8575302
  • Niessen M, Schneiter R, Nothiger R. Molecular identification of virilizer, a gene required for the expression of the sex-determining gene Sex-lethal in Drosophila melanogaster. Genetics 2001; 157:679; PMID:1461513
  • Raffel GD, Mercher T, Shigematsu H, Williams IR, Cullen DE, Akashi K, Bernard OA, Gilliland DG. Ott1(Rbm15) has pleiotropic roles in hematopoietic development. Proc Natl Acad Sci U S A 2007; 104:6001; PMID:1851606; http://dx.doi.org/10.1073/pnas.0609041104
  • Niu C, Zhang J, Breslin P, Onciu M, Ma Z, Morris SW. c-Myc is a target of RNA-binding motif protein 15 in the regulation of adult hematopoietic stem cell and megakaryocyte development. Blood 2009; 114:2087; PMID:2744570; http://dx.doi.org/10.1182/blood-2009-01-197921
  • Raffel GD, Chu GC, Jesneck JL, Cullen DE, Bronson RT, Bernard OA, Gilliland DG. Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen. Mol Cell Biol 2009; 29:333; PMID:2612519; http://dx.doi.org/10.1128/MCB.00370-08
  • Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X, Bouman D, Li Y, Mehta PK, Nizetic D, et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genetics 2001; 28:220; PMID:11431691; http://dx.doi.org/10.1038/90054
  • Chang JL, Lin HV, Blauwkamp TA, Cadigan KM. Spenito and Split ends act redundantly to promote Wingless signaling. Dev Biol 2008; 314:100; PMID:18174108; http://dx.doi.org/10.1016/j.ydbio.2007.11.023
  • Jemc J, Rebay I. Characterization of the split ends-like gene spenito reveals functional antagonism between SPOC family members during Drosophila eye development. Genetics 2006; 173:279; PMID:1461450; http://dx.doi.org/10.1534/genetics.106.055558
  • Yan D, Perrimon N. spenito is required for sex determination in Drosophila melanogaster. Proc Natl Acad Sci U S A 2015; 112:11606; http://dx.doi.org/10.1073/pnas.1515891112
  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 2011; 7:885; PMID:3218240; http://dx.doi.org/10.1038/nchembio.687
  • Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Communications 2013; 4:1798; PMID:23653210; http://dx.doi.org/10.1038/ncomms2822
  • Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, Qian SB. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 2015; 526:591; PMID:26458103; http://dx.doi.org/10.1038/nature15377
  • Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genetics 2007; 39:724; PMID:17496892; http://dx.doi.org/10.1038/ng2048
  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316:889; PMID:2646098; http://dx.doi.org/10.1126/science.1141634
  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316:1341; PMID:3214617; http://dx.doi.org/10.1126/science.1142382
  • Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, Najjar S, Nagaraja R, Orrú M, Usala G, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genetics 2007; 3:e115; PMID:1934391; http://dx.doi.org/10.1371/journal.pgen.0030115
  • Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, Meyre D, Golzio C, Molinari F, Kadhom N, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genetics 2009; 85:106; PMID:2706958; http://dx.doi.org/10.1016/j.ajhg.2009.06.002
  • Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 2013; 16:1042; PMID:23817550; http://dx.doi.org/10.1038/nn.3449
  • Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Brüning JC, Nolan PM, Ashcroft FM, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genetics 2010; 42:1086; PMID:3018646; http://dx.doi.org/10.1038/ng.713
  • Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija R, Ruvkun G, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 2013; 155:1409; PMID:3956118; http://dx.doi.org/10.1016/j.cell.2013.10.047
  • Robbens S, Rouzé P, Cock JM, Spring J, Worden AZ, Van de Peer Y. The FTO gene, implicated in human obesity, is found only in vertebrates and marine algae. J Mol Evolution 2008; 66:80; PMID:18058156; http://dx.doi.org/10.1007/s00239-007-9059-z
  • Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, Lu Z, He C, Min J. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol 2014; 10:927; PMID:25242552; http://dx.doi.org/10.1038/nchembio.1654
  • Xu C, Liu K, Ahmed H, Loppnau P, Schapira M, Min J. Structural Basis for the Discriminative Recognition of N6-Methyladenosine RNA by the Human YT521-B homology domain family of proteins. J Biol Chem 2015; 290:24902; PMID:4598999; http://dx.doi.org/10.1074/jbc.M115.680389
  • Luo S, Tong L. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci U S A 2014; 111:13834; PMID:25201973; http://dx.doi.org/10.1073/pnas.1412742111
  • Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 2016; 61:507; PMID:26876937; http://dx.doi.org/10.1016/j.molcel.2016.01.012
  • Hartmann AM, Nayler O, Schwaiger FW, Obermeier A, Stamm S. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(fyn). Mol Biol Cell 1999; 10:3909; PMID:25688; http://dx.doi.org/10.1091/mbc.10.11.3909
  • Rafalska I, Zhang Z, Benderska N, Wolff H, Hartmann AM, Brack-Werner R, Stamm S. The intranuclear localization and function of YT521-B is regulated by tyrosine phosphorylation. Hum Mol Genetics 2004; 13:1535; PMID:15175272; http://dx.doi.org/10.1093/hmg/ddh167
  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505:117; http://dx.doi.org/10.1038/nature12730
  • Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Communications 2016; 7:12626; PMID:27558897; http://dx.doi.org/10.1038/ncomms12626
  • Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 2014; 15:707; PMID:4278749; http://dx.doi.org/10.1016/j.stem.2014.09.019
  • Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, Ho RK, He C. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 2017; 542:475; PMID:5323276; http://dx.doi.org/10.1038/nature21355
  • Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB, Jaffrey SR. 5′ UTR m(6)A Promotes Cap-Independent Translation. Cell 2015; 163:999; PMID:4695625; http://dx.doi.org/10.1016/j.cell.2015.10.012
  • Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res 2017; 27(3):444-7; PMID:28106076; http://dx.doi.org/10.1038/cr.2017.10
  • Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 2017; 27(3):315-328; PMID:28106072; http://dx.doi.org/10.1038/cr.2017.15
  • Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015; 518:560; PMID:4355918; http://dx.doi.org/10.1038/nature14234
  • Zaharieva E, Haussmann IU, Brauer U, Soller M. Concentration and Localization of Coexpressed ELAV/Hu Proteins Control Specificity of mRNA Processing. Mol Cell Biol 2015; 35:3104; PMID:4539368; http://dx.doi.org/10.1128/MCB.00473-15
  • Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 2013; 155:793; PMID:24209618; http://dx.doi.org/10.1016/j.cell.2013.10.026
  • Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genetics 2012; 8:e1002732; PMID:22685417; http://dx.doi.org/10.1371/journal.pgen.1002732
  • Hongay CF, Orr-Weaver TL. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci U S A 2011; 108:14855; PMID:21873203; http://dx.doi.org/10.1073/pnas.1111577108
  • Lahav R, Gammie A, Tavazoie S, Rose MD. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway. Mol Cell Biol 2007; 27:818; PMID:17101777; http://dx.doi.org/10.1128/MCB.00439-06
  • Lee J-H, Skalnik DG. Rbm15-Mkl1 Interacts with the Setd1b Histone H3-Lys4 Methyltransferase via a SPOC Domain That Is Required for Cytokine-Independent Proliferation. PLoS ONE. 7(8):e42965. http://dx.doi.org/10.1371/journal.pone.0042965