1,930
Views
24
CrossRef citations to date
0
Altmetric
Point of View

Targeting the nuclear RNA exosome: Poly(A) binding proteins enter the stage

ORCID Icon & ORCID Icon
Pages 820-826 | Received 17 Feb 2017, Accepted 24 Mar 2017, Published online: 04 May 2017

References

  • Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: The exosome. Biochim Biophys Acta 2013; 1829(6–7):552-60; PMID:23352926; https://doi.org/10.1016/j.bbagrm.2013.01.006
  • Januszyk K, Lima CD. The eukaryotic RNA exosome. Curr Opin Struct Biol 2014; 24:132-40; PMID:24525139; https://doi.org/10.1016/j.sbi.2014.01.011
  • Kilchert C, Wittmann S, Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17(4):227-39; PMID:26726035; https://doi.org/10.1038/nrm.2015.15
  • Mitchell P. Exosome substrate targeting: The long and short of it. Biochem Soc Trans 2014; 42(4):1129-34; PMID:25110014; https://doi.org/10.1042/BST20140088
  • Schneider C, Tollervey D. Threading the barrel of the RNA exosome. Trends Biochem Sci 2013; 38(10):485-93; PMID:23910895; https://doi.org/10.1016/j.tibs.2013.06.013
  • Gudipati RK, Xu Z, Lebreton A, Séraphin B, Steinmetz LM, Jacquier A, Libri D. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 2012; 48(3):409-21; PMID:23000176; https://doi.org/10.1016/j.molcel.2012.08.018
  • Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, et al. Identification of a nuclear exosome decay pathway for processed transcripts. Mol Cell 2016; 64(3):520-33; PMID:27871484; https://doi.org/10.1016/j.molcel.2016.09.025
  • Hardwick SW, Luisi BF. Rarely at rest: RNA helicases and their busy contributions to RNA degradation, regulation and quality control. RNA Biol 2013; 10(1):56-70; PMID:23064154; https://doi.org/10.4161/rna.22270
  • Bernstein J, Ballin JD, Patterson DN, Wilson GM, Toth EA. Unique properties of the Mtr4p-poly(A) complex suggest a role in substrate targeting. Biochemistry 2010; 49(49):10357-70; PMID:21058657; https://doi.org/10.1021/bi101518x
  • Bernstein J, Patterson DN, Wilson GM, Toth EA. Characterization of the essential activities of Saccharomyces cerevisiae Mtr4p, a 3′->5′ helicase partner of the nuclear exosome. J Biol Chem 2008; 283(8):4930-42; PMID:18096702; https://doi.org/10.1074/jbc.M706677200
  • de la Cruz J, Kressler D, Tollervey D, Linder P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 1998; 17(4):1128-40; PMID:9463390; https://doi.org/10.1093/emboj/17.4.1128
  • Fairman-Williams ME, Guenther UP, Jankowsky E. SF1 and SF2 helicases: Family matters. Curr Opin Struct Biol 2010; 20(3):313-24; PMID:20456941; https://doi.org/10.1016/j.sbi.2010.03.011
  • Weir JR, Bonneau F, Hentschel J, Conti E. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc Natl Acad Sci U S A 2010; 107(27):12139-44; PMID:20566885; https://doi.org/10.1073/pnas.1004953107
  • Mitchell P, Petfalski E, Houalla R, Podtelejnikov A, Mann M, Tollervey D. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 2003; 23(19):6982-92; PMID:12972615; https://doi.org/10.1128/MCB.23.19.6982-6992.2003
  • Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 2014; 33(23):2829-46; PMID:25319414; https://doi.org/10.15252/embj.201488757
  • Schilders G, van Dijk E, Pruijn GJ. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res 2007; 35(8):2564-72; PMID:17412707; https://doi.org/10.1093/nar/gkm082
  • Milligan L, Decourty L, Saveanu C, Rappsilber J, Ceulemans H, Jacquier A, Tollervey D. A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 2008; 28(17):5446-57; PMID:18591258; https://doi.org/10.1128/MCB.00463-08
  • Schilders G, Raijmakers R, Raats JM, Pruijn GJ. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 2005; 33(21):6795-804; PMID:16396833; https://doi.org/10.1093/nar/gki982
  • Shi Y, Pellarin R Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A Rout MP, Chait BT. A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 2015; 12(12):1135-8; PMID:26436480; https://doi.org/10.1038/nmeth.3617
  • Thoms M, Thomson E, Baßler J, Gnädig M, Griesel S, Hurt E. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 2015; 162(5):1029-38; PMID:26317469; https://doi.org/10.1016/j.cell.2015.07.060
  • Hiraishi N, Ishida Y, Nagahama M. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74. Biochem Biophys Res Commun 2015; 467(3):534-40; PMID:26456651; https://doi.org/10.1016/j.bbrc.2015.09.160
  • Macias S, Cordiner RA, Gautier P, Plass M, Cáceres JF. DGCR8 acts as an adaptor for the exosome complex to degrade double-stranded structured RNAs. Mol Cell 2015; 60(6):873-85; PMID:26687677; https://doi.org/10.1016/j.molcel.2015.11.011
  • Andersen PR, Domanski M, Kristiansen MS, Storvall H, Ntini E, Verheggen C, Schein A, Bunkenborg J, Poser I, Hallais M, et al. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat Struct Mol Biol 2013; 20(12):1367-76; PMID:24270879; https://doi.org/10.1038/nsmb.2703
  • Hrossova D, Sikorsky T, Potesil D, Bartosovic M, Pasulka J, Zdrahal Z, Stefl R, Vanacova S. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3′-end extended forms of snRNAs. Nucleic Acids Res 2015; 43(8):4236-48; PMID:25852104; https://doi.org/10.1093/nar/gkv240
  • Lubas M, Andersen PR, Schein A, Dziembowski A, Kudla G, Jensen TH. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep 2015; 10(2):178-92; PMID:25578728; https://doi.org/10.1016/j.celrep.2014.12.026
  • Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Lykke-Andersen S, Andersen JS, Dziembowski A, Jensen TH. Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 2011; 43(4):624-37; PMID:21855801; https://doi.org/10.1016/j.molcel.2011.06.028
  • Beaulieu YB, Kleinman CL, Landry-Voyer AM, Majewski J, Bachand F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet 2012; 8(11):e1003078; PMID:23166521; https://doi.org/10.1371/journal.pgen.1003078
  • Bresson SM, Conrad NK. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay. PLoS Genetics 2013; 9(10):e1003893; PMID:24146636; https://doi.org/10.1371/journal.pgen.1003893
  • Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E. The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities. Mol Cell 2014; 55(6):856-67; PMID:25175027; https://doi.org/10.1016/j.molcel.2014.07.020
  • Schmidt K, Butler JS. Nuclear RNA surveillance: Role of TRAMP in controlling exosome specificity. Wiley Interdiscip Rev RNA 2013; 4(2):217-31; PMID:23417976; https://doi.org/10.1002/wrna.1155
  • Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W. A new yeast poly(A) polymerase complex involved in RNA quality control. PLoS Biol 2005; 3(6):e189; PMID:15828860; https://doi.org/10.1371/journal.pbio.0030189
  • Porrua O, Boudvillain M, Libri D. Transcription termination: Variations on common themes. Trends Genet 2016; 32(8):508-22; PMID:27371117; https://doi.org/10.1016/j.tig.2016.05.007
  • Arigo JT, Carroll KL, Ames JM, Corden JL. Regulation of yeast NRD1 expression by premature transcription termination. Mol Cell 2006; 21(5):641-51; PMID:16507362; https://doi.org/10.1016/j.molcel.2006.02.005
  • Arigo JT, Eyler DE, Carroll KL, Corden JL. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 2006; 23(6):841-51; PMID:16973436; https://doi.org/10.1016/j.molcel.2006.07.024
  • Thiebaut M, Kisseleva-Romanova E, Rougemaille M, Boulay J, Libri D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 2006; 23(6):853-64; PMID:16973437; https://doi.org/10.1016/j.molcel.2006.07.029
  • Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, Fortova A, Lacroute F, Vanacova S, Cramer P, Stefl R, et al. Molecular basis for coordinating transcription termination with noncoding RNA degradation. Mol Cell 2014; 55(3):467-81; PMID:25066235; https://doi.org/10.1016/j.molcel.2014.05.031
  • Vasiljeva L, Buratowski S. Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 2006; 21(2):239-48; PMID:16427013; https://doi.org/10.1016/j.molcel.2005.11.028
  • Wlotzka W, Kudla G, Granneman S, Tollervey D. The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J 2011; 30(9):1790-803; PMID:21460797; https://doi.org/10.1038/emboj.2011.97
  • Hallais M, Pontvianne F, Andersen PR, Clerici M, Lener D, Benbahouche Nel H, Gostan T, Vandermoere F, Robert MC, Cusack S, et al. CBC-ARS2 stimulates 3′-end maturation of multiple RNA families and favors cap-proximal processing. Nat Struct Mol Biol 2013; 20(12):1358-66; PMID:24270878; https://doi.org/10.1038/nsmb.2720
  • Egecioglu DE, Henras AK, Chanfreau GF. Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. RNA 2006; 12(1):26-32; PMID:16373491; https://doi.org/10.1261/rna.2207206
  • Fasken MB, Leung SW, Banerjee A, Kodani MO, Chavez R, Bowman EA, Purohit MK, Rubinson ME, Rubinson EH, Corbett AH. Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 2011; 286(43):37429-45; PMID:21878619; https://doi.org/10.1074/jbc.M111.271494
  • Schmidt K, Xu Z, Mathews DH, Butler JS. Air proteins control differential TRAMP substrate specificity for nuclear RNA surveillance. RNA 2012; 18(10):1934-45; PMID:22923767; https://doi.org/10.1261/rna.033431.112
  • Houseley J, Tollervey D. Yeast Trf5p is a nuclear poly(A) polymerase. EMBO Rep 2006; 7(2):205-11; PMID:16374505; https://doi.org/10.1038/sj.embor.7400612
  • Kadaba S, Wang X, Anderson JT. Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. RNA 2006; 12(3):508-21; PMID:16431988; https://doi.org/10.1261/rna.2305406
  • San Paolo S, Vanacova S, Schenk L, Scherrer T, Blank D, Keller W, Gerber AP. Distinct roles of non-canonical poly(A) polymerases in RNA metabolism. PLoS Genet 2009; 5(7):e1000555; PMID:19593367; https://doi.org/10.1371/journal.pgen.1000555
  • LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 2005; 121(5):713-24; PMID:15935758; https://doi.org/10.1016/j.cell.2005.04.029
  • Buhler M, Haas W, Gygi SP, Moazed D. RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 2007; 129(4):707-21; PMID:17512405; https://doi.org/10.1016/j.cell.2007.03.038
  • Wang SW, Stevenson AL, Kearsey SE, Watt S, Bähler J. Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol Cell Biol 2008; 28(2):656-65; PMID:18025105; https://doi.org/10.1128/MCB.01531-07
  • Win TZ, Draper S, Read RL, Pearce J, Norbury CJ, Wang SW. Requirement of fission yeast Cid14 in polyadenylation of rRNAs. Mol Cell Biol 2006; 26(5):1710-21; PMID:16478992; https://doi.org/10.1128/MCB.26.5.1710-1721.2006
  • Egan ED, Braun CR, Gygi SP, Moazed D. Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. RNA 2014; 20(6):867-81; PMID:24713849; https://doi.org/10.1261/rna.044479.114
  • Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, et al. Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 2013; 155(5):1061-74; PMID:24210919; https://doi.org/10.1016/j.cell.2013.10.027
  • Zhou Y, Zhu J, Schermann G, Ohle C, Bendrin K, Sugioka-Sugiyama R, Sugiyama T, Fischer T. The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat Commun 2015; 6:7050; PMID:25989903; https://doi.org/10.1038/ncomms8050
  • Lange H, Sement FM, Gagliardi D. MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana. Plant J 2011; 68(1):51-63; PMID:21682783; https://doi.org/10.1111/j.1365-313X.2011.04675.x
  • Lange H, Zuber H, Sement FM, Chicher J, Kuhn L, Hammann P, Brunaud V, Bérard C, Bouteiller N, Balzergue S, et al. The RNA helicases AtMTR4 and HEN2 target specific subsets of nuclear transcripts for degradation by the nuclear exosome in Arabidopsis thaliana. PLoS Genet 2014; 10(8):e1004564; PMID:25144737; https://doi.org/10.1371/journal.pgen.1004564
  • Wigington CP, Williams KR, Meers MP, Bassell GJ, Corbett AH. Poly(A) RNA-binding proteins and polyadenosine RNA: New members and novel functions. Wiley Interdiscip Rev RNA 2014; 5(5):601-22; PMID:24789627; https://doi.org/10.1002/wrna.1233
  • Kuhn U, Buschmann J, Wahle E. The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation. RNA 2017; 23(4):473-82; PMID:28096519; https://doi.org/10.1261/rna.057026.116
  • Kuhn U, Gündel M, Knoth A, Kerwitz Y, Rüdel S, Wahle E. Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem 2009; 284(34):22803-14; PMID:19509282; https://doi.org/10.1074/jbc.M109.018226
  • Minvielle-Sebastia L, Keller W. mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr Opin Cell Biol 1999; 11(3):352-7; PMID:10395555; https://doi.org/10.1016/S0955-0674(99)80049-0
  • Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH. The nuclear polyA-binding protein nab2p is essential for mRNA production. Cell Rep 2015; 12(1):128-39; PMID:26119729; https://doi.org/10.1016/j.celrep.2015.06.008
  • Viphakone N, Voisinet-Hakil F, Minvielle-Sebastia L. Molecular dissection of mRNA poly(A) tail length control in yeast. Nucleic Acids Res 2008; 36(7):2418-33; PMID:18304944; https://doi.org/10.1093/nar/gkn080
  • Wahle E. Poly(A) tail length control is caused by termination of processive synthesis. J Biol Chem 1995; 270(6):2800-8; PMID:7852352.
  • Chen Z, Li Y, Krug RM. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J 1999; 18(8):2273-83; PMID:10205180; https://doi.org/10.1093/emboj/18.8.2273
  • Hector RE, Nykamp KR, Dheur S, Anderson JT, Non PJ, Urbinati CR, Wilson SM, Minvielle-Sebastia L, Swanson MS. Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export. EMBO J 2002; 21(7):1800-10; PMID:11927564; https://doi.org/10.1093/emboj/21.7.1800
  • Schmid M, Poulsen MB, Olszewski P, Pelechano V, Saguez C, Gupta I, Steinmetz LM, Moore C, Jensen TH. Rrp6p controls mRNA poly(A) tail length and its decoration with poly(A) binding proteins. Mol Cell 2012; 47(2):267-80; PMID:22683267; https://doi.org/10.1016/j.molcel.2012.05.005
  • Libri D. Nuclear poly(a)-binding proteins and nuclear degradation: Take the mRNA and run? Mol Cell 2010; 37(1):3-5; PMID:20129049; https://doi.org/10.1016/j.molcel.2009.12.029
  • Kerwitz Y, Kühn U, Lilie H, Knoth A, Scheuermann T, Friedrich H, Schwarz E, Wahle E. Stimulation of poly(A) polymerase through a direct interaction with the nuclear poly(A) binding protein allosterically regulated by RNA. EMBO J 2003; 22(14):3705-14; PMID:12853485; https://doi.org/10.1093/emboj/cdg347
  • Bresson SM, Hunter OV, Hunter AC, Conrad NK. Canonical poly(a) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet 2015; 11(10):e1005610; PMID:26484760; https://doi.org/10.1371/journal.pgen.1005610
  • Perreault A, Lemieux C, Bachand F. Regulation of the nuclear poly(A)-binding protein by arginine methylation in fission yeast. J Biol Chem 2007; 282(10):7552-62; PMID:17213188; https://doi.org/10.1074/jbc.M610512200
  • Lemay JF, Lemieux C, St-André O, Bachand F. Crossing the borders: poly(A)-binding proteins working on both sides of the fence. RNA Biol 2010; 7(3):291-5; PMID:20400847; https://doi.org/10.4161/rna.7.3.11649
  • Lemieux C, Marguerat S, Lafontaine J, Barbezier N, Bähler J, Bachand F. A Pre-mRNA degradation pathway that selectively targets intron-containing genes requires the nuclear poly(A)-binding protein. Mol Cell 2011; 44(1):108-19; PMID:21981922; https://doi.org/10.1016/j.molcel.2011.06.035
  • St-Andre O, Lemieux C, Perreault A, Lackner DH, Bähler J, Bachand F. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast. J Biol Chem 2010; 285(36):27859-68; PMID:20622014; https://doi.org/10.1074/jbc.M110.150748
  • Lemay JF, D'Amours A, Lemieux C, Lackner DH, St-Sauveur VG, Bähler J, Bachand F. The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 2010; 37(1):34-45; PMID:20129053; https://doi.org/10.1016/j.molcel.2009.12.019
  • Grenier St-Sauveur V, Soucek S, Corbett AH, Bachand F. Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay. Mol Cell Biol 2013; 33(23):4718-31; PMID:24081329; https://doi.org/10.1128/MCB.00887-13
  • Thakurta AG, Ho Yoon J, Dhar R. Schizosaccharomyces pombe spPABP, a homologue of Saccharomyces cerevisiae Pab1p, is a non-essential, shuttling protein that facilitates mRNA export. Yeast 2002; 19(9):803-10; PMID:12112233; https://doi.org/10.1002/yea.876
  • Dunn EF, Hammell CM, Hodge CA, Cole CN. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev 2005; 19(1):90-103; PMID:15630021; https://doi.org/10.1101/gad.1267005
  • Kelly SM, Leung SW, Pak C, Banerjee A, Moberg KH, Corbett AH. A conserved role for the zinc finger polyadenosine RNA binding protein, ZC3H14, in control of poly(A) tail length. RNA 2014; 20(5):681-8; PMID:24671764; https://doi.org/10.1261/rna.043984.113
  • Wigington CP, Morris KJ, Newman LE, Corbett AH. The polyadenosine RNA-binding protein, zinc finger cys3his protein 14 (ZC3H14), regulates the Pre-mRNA processing of a key ATP synthase subunit mRNA. J Biol Chem 2016; 291(43):22442-59; PMID:27563065; https://doi.org/10.1074/jbc.M116.754069
  • Moon DH, Segal M, Boyraz B, Guinan E, Hofmann I, Cahan P, Tai AK, Agarwal S. Poly(A)-specific ribonuclease (PARN) mediates 3′-end maturation of the telomerase RNA component. Nat Genet 2015; 47(12):1482-8; PMID:26482878; https://doi.org/10.1038/ng.3423
  • Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. A polyadenylation-dependent 3′ end maturation pathway is required for the synthesis of the human telomerase RNA. Cell Rep 2015; 13(10):2244-57; PMID:26628368; https://doi.org/10.1016/j.celrep.2015.11.003
  • Tseng CK, Wang HF, Burns AM, Schroeder MR, Gaspari M, Baumann P. Human telomerase RNA processing and quality control. Cell Rep 2015; 13(10):2232-43; PMID:26628367; https://doi.org/10.1016/j.celrep.2015.10.075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.