1,173
Views
9
CrossRef citations to date
0
Altmetric
Point of View

Messing up translation from the start: How AtaT inhibits translation initiation in E. coli

, &
Pages 303-307 | Received 11 Aug 2017, Accepted 08 Oct 2017, Published online: 30 Jan 2018

References

  • Jurenas D, Chatterjee S, Konijnenberg A, Sobott F, Droogmans L, Garcia-Pino A, Van Melderen L. AtaT blocks translation initiation by N--acetylation of the initiator tRNAfMet. Nat Chem Biol. 2017;13:640–6. doi:10.1038/nchembio.2346.
  • Hayes F, Van Melderen L. Toxins--antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol. 2011;46:386–408. doi:10.3109/10409238.2011.600437.
  • Page R, Peti W. Toxin--antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12:208–14. doi:10.1038/nchembio.2044.
  • Goeders N, Van Melderen L. Toxin--antitoxin systems as multilevel interaction systems. Toxins (Basel). 2014;6:304–24. doi:10.3390/toxins6010304.
  • Leplae R, Geeraerts D, Hallez R, Guglielmini J, Dreze P, Van Melderen L. Diversity of bacterial type II toxin--antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 2011;39:5513–25. doi:10.1093/nar/gkr131.
  • Ramisetty BC, Santhosh RS. Horizontal gene transfer of chromosomal Type II toxin--antitoxin systems of Escherichia coli. FEMS Microbiol Lett. 2016;363.
  • Pandey DP, Gerdes K. Toxin--antitoxin loci are highly abundant in free--living but lost from host--associated prokaryotes. Nucleic Acids Res. 2005;33:966–76. doi:10.1093/nar/gki201.
  • Van Melderen L. Toxin--antitoxin systems: why so many, what for? Curr Opin Microbiol. 2010;13:781–5. doi:10.1016/j.mib.2010.10.006.
  • Van Melderen L, Saavedra De Bast M. Bacterial toxin--antitoxin systems: more than selfish entities? PLoS Genet. 2009;5:e1000437. doi:10.1371/journal.pgen.1000437.
  • Harms A, Maisonneuve E, Gerdes K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 2016;354. doi:10.1126/science.aaf4268.
  • Magnuson RD. Hypothetical functions of toxin--antitoxin systems. J Bacteriol. 2007;189:6089–92. doi:10.1128/JB.00958-07.
  • Yarmolinski MB. Programmed cell death in bacterial populations. Science. 1995;267:836–7. doi:10.1126/science.7846528.
  • Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP, Lewis K. ATP-- Dependent Persister Formation in Escherichia coli. MBio. 2017;8. pii:e02267–16. doi:10.1128/mBio.02267-16.
  • Ramisetty BC, Ghosh D, Roy Chowdhury M, Santhosh RS. What Is the Link between Stringent Response, Endoribonuclease Encoding Type II Toxin--Antitoxin Systems and Persistence? Front Microbiol. 2016;7:1882. doi:10.3389/fmicb.2016.01882.
  • Van Melderen L, Wood TK. Commentary: What Is the Link between Stringent Response, Endoribonuclease Encoding Type II Toxin--Antitoxin Systems and Persistence? Front Microbiol. 2017;8:191. doi:10.3389/fmicb.2017.00191.
  • Bernard P, Couturier M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA--topoisomerase II complexes. J Mol Biol. 1992;226:735–45. doi:10.1016/0022-2836(92)90629-X.
  • Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell. 2003;12:913–23. doi:10.1016/S1097-2765(03)00402-7.
  • Schifano JM, Edifor R, Sharp JD, Ouyang M, Konkimalla A, Husson RN, Woychik NA. Mycobacterial toxin MazF--mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site. Proc Natl Acad Sci U S A. 2013;110:8501–6. doi:10.1073/pnas.1222031110.
  • Schifano JM, Cruz JW, Vvedenskaya IO, Edifor R, Ouyang M, Husson RN, Nickels BE, Woychik NA. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res. 2016;44:1256–70. doi:10.1093/nar/gkv1370.
  • Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NAJ, Loris R, Zenkin N. The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF--Tu. Nat Chem Biol. 2013;9:811–7. doi:10.1038/nchembio.1364.
  • Harms A, Stanger FV, Scheu PD, de Jong IG, Goepfert A, Glatter T, Gerdes K, Schirmer T, Dehio C. Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology. Cell Rep. 2015;12:1497–507. doi:10.1016/j.celrep.2015.07.056.
  • Lopes AP, Lopes LM, Fraga TR, Chura-Chambi RM, Sanson AL, Cheng E, Nakajima E, Morganti L, Martins EA. VapC from the leptospiral VapBC toxin--antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One. 2014;9:e101678. doi:10.1371/journal.pone.0101678.
  • Winther K, Tree JJ, Tollervey D, Gerdes K. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res. 2016;44:9860–71. doi:10.1093/nar/gkw781.
  • Winther KS, Brodersen DE, Brown AK, Gerdes K. VapC20 of Mycobacterium tuberculosis cleaves the sarcin--ricin loop of 23S rRNA. Nat Commun. 2013;4:2796. doi:10.1038/ncomms3796.
  • Winther KS, Gerdes K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc Natl Acad Sci U S A. 2011;108:7403–7. doi:10.1073/pnas.1019587108.
  • Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev. 2005;69:101–23. doi:10.1128/MMBR.69.1.101-123.2005.
  • Seong BL, RajBhandary UL. Mutants of Escherichia coli formylmethionine tRNA: a single base change enables initiator tRNA to act as an elongator in vitro. Proc Natl Acad Sci U S A. 1987;84:8859–63. doi:10.1073/pnas.84.24.8859.
  • Varshney U, Lee CP, RajBhandary UL. From elongator tRNA to initiator tRNA. Proc Natl Acad Sci U S A. 1993;90:2305–9. doi:10.1073/pnas.90.6.2305.
  • Seong BL, RajBhandary UL. Escherichia coli formylmethionine tRNA: mutations in GGGCCC sequence conserved in anticodon stem of initiator tRNAs affect initiation of protein synthesis and conformation of anticodon loop. Proc Natl Acad Sci U S A. 1987; 84:334–8. doi:10.1073/pnas.84.2.334.
  • Iqbal N, Guerout AM, Krin E, Le Roux F, Mazel D. Comprehensive Functional Analysis of the 18 Vibrio cholerae N16961 Toxin--Antitoxin Systems Substantiates Their Role in Stabilizing the Superintegron. J Bacteriol. 2015;197:2150–9. doi:10.1128/JB.00108-15.
  • Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA, Helaine S. A Salmonella Toxin Promotes Persister Formation through Acetylation of tRNA. Mol Cell. 2016;63:86–96. doi:10.1016/j.molcel.2016.05.002.
  • McVicker G, Tang CM. Deletion of toxin--antitoxin systems in the evolution of Shigella sonnei as a host--adapted pathogen. Nat Microbiol. 2016;2:16204. doi:10.1038/nmicrobiol.2016.204.
  • Van Acker H, Sass A, Dhondt I, Nelis HJ, Coenye T. Involvement of toxin--antitoxin modules in Burkholderia cenocepacia biofilm persistence. Pathog Dis. 2014;71:326–35. doi:10.1111/2049-632X.12177.
  • Jurenas D, Garcia-Pino A, Van Melderen L. Novel toxins from type II toxin-- antitoxin systems with acetyltransferase activity. Plasmid. 2017;93:30–5. doi:10.1016/j.plasmid.2017.08.005.
  • Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343:204–8. doi:10.1126/science.1244705.
  • Janiak F, Dell VA, Abrahamson JK, Watson BS, Miller DL, Johnson AE. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Biochemistry. 1990;29:4268–77. doi:10.1021/bi00470a002.
  • Favrot L, Blanchard JS, Vergnolle O. Bacterial GCN5--Related N--Acetyltransferases: From Resistance to Regulation. Biochemistry. 2016;55:989–1002. doi:10.1021/acs.biochem.5b01269.
  • Salah Ud-Din AI, Tikhomirova A, Roujeinikova A. Structure and Functional Diversity of GCN5--Related N--Acetyltransferases (GNAT). Int J Mol Sci. 2016;17. doi:10.3390/ijms17071018.
  • Sharma S, Kaushik S, Sinha M, Kushwaha GS, Singh A, Sikarwar J, Chaudhary A, Gupta A, Kaur P, Singh TP. Structural and functional insights into peptidyl--tRNA hydrolase. Biochim Biophys Acta. 2014;1844:1279–88. doi:10.1016/j.bbapap.2014.04.012.
  • Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M. The bacterial toxin RelE displays codon--specific cleavage of mRNAs in the ribosomal A site. Cell. 2003;112:131–40. doi:10.1016/S0092-8674(02)01248-5.
  • Ainelo A, Tamman H, Leppik M, Remme J, Horak R. The toxin GraT inhibits ribosome biogenesis. Mol Microbiol. 2016;100:719–34. doi:10.1111/mmi.13344.
  • Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell. 2013;52:248–54. doi:10.1016/j.molcel.2013.08.045.
  • Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl--tRNA--synthetase. Nat Commun. 2013;4:3001. doi:10.1038/ncomms4001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.