2,168
Views
29
CrossRef citations to date
0
Altmetric
Point of Views

tRNA-derived small RNAs: New players in genome protection against retrotransposons

ORCID Icon
Pages 170-175 | Received 31 Aug 2017, Accepted 30 Oct 2017, Published online: 21 Dec 2017

References

  • Lisch D. How important are transposons for plant evolution? Nat Rev Genet. 2013;14:49–61. doi:10.1038/nrg3374
  • Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–85. doi:10.1038/nrg2072
  • Martinez G, Slotkin RK. Developmental relaxation of transposable element silencing in plants: functional or byproduct? Curr Opin Plant Biol. 2012;15:496–502. doi:10.1016/j.pbi.2012.09.001
  • Martienssen RA. Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. New Phytol. 2010;186:46–53. doi:10.1111/j.1469-8137.2010.03193.x
  • Cavrak VV, Lettner N, Jamge S, et al. How a retrotransposon exploits the plant's heat stress response for its activation. PLOS Genetics. 2014;10:e1004115. doi:10.1371/journal.pgen.1004115
  • Martinez G, Panda K, Kohler C, et al. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat Plants. 2016;2:16030. doi:10.1038/nplants.2016.30
  • Slotkin RK, Vaughn M, Borges F, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136:461–72. doi:10.1016/j.cell.2008.12.038
  • Ashe A, Sapetschnig A, Weick EM, et al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell. 2012;150:88–99. doi:10.1016/j.cell.2012.06.018
  • Malone CD, Brennecke J, Dus M, et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 2009;137:522–35. doi:10.1016/j.cell.2009.03.040
  • Brennecke J, Malone CD, Aravin AA, et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science. 2008;322:1387–92. doi:10.1126/science.1165171
  • Hoagland MB, Stephenson ML, Scott JF, et al. A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem. 1958;231:241–57.
  • Stoecklin G, Diederichs S. tRNAs: new tricks from old dogs. EMBO J. 2014;33:1981–3. doi:10.15252/embj.201489634
  • Dhahbi JM. 5' tRNA Halves: The next generation of immune signaling molecules. Front Immunol. 2015;6:74. doi:10.3389/fimmu.2015.00074
  • Pederson T. Regulatory RNAs derived from transfer RNA? RNA. 2010;16:1865–9. doi:10.1261/rna.2266510
  • Wang Y, Li H, Sun Q, et al. Characterization of small RNAs derived from tRNAs, rRNAs and snoRNAs and their response to heat stress in wheat seedlings. PLoS One. 2016;11:e0150933. doi:10.1371/journal.pone.0150933
  • Thompson DM, Parker R. Stressing out over tRNA cleavage. Cell. 2009;138:215–9. doi:10.1016/j.cell.2009.07.001
  • Garcia-Silva MR, Cabrera-Cabrera F, G®πida MC, et al. Novel aspects of tRNA-derived small RNAs with potential impact in infectious diseases. Adv Biosci Biotechnol. 2013;4(5):9.
  • Blanco S, Dietmann S, Flores JV, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33:2020–39. doi:10.15252/embj.201489282
  • Schaefer M, Pollex T, Hanna K, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24:1590–5. doi:10.1101/gad.586710
  • Tuorto F, Liebers R, Musch T, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19:900–5. doi:10.1038/nsmb.2357
  • Zhang S, Sun L, Kragler F. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol. 2009;150:378–87. doi:10.1104/pp.108.134767
  • Ivanov P, Emara MM, Villen J, et al. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell. 2011;43:613–23. doi:10.1016/j.molcel.2011.06.022
  • Martinez G, Choudury SG, Slotkin RK. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res. 2017;45:5142–52. doi:10.1093/nar/gkx103
  • Alves CS, Vicentini R, Duarte GT, et al. Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol Biol. 2016;93:35. doi:10.1007/s11103-016-0545-9.
  • Kumar P, Anaya J, Mudunuri SB, et al. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 2014;12:78. doi:10.1186/s12915-014-0078-0
  • Loss-Morais G, Waterhouse PM, Margis R. Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. Biol Direct. 2013;8:6. doi:10.1186/1745-6150-8-6
  • Kumar P, Kuscu C, Dutta A. Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends Biochem Sci. 2016;41:679–89. doi:10.1016/j.tibs.2016.05.004
  • Hasler D, Lehmann G, Murakawa Y, et al. The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. Mol Cell. 2016;63:110–24. doi:10.1016/j.molcel.2016.05.026
  • Wang Q, Li T, Xu K, et al. The tRNA-Derived Small RNAs Regulate Gene Expression through Triggering Sequence-Specific Degradation of Target Transcripts in the Oomycete Pathogen Phytophthora sojae. Front Plant Sci. 2016;7:1938. doi:10.3389/fpls.2016.01938
  • Schorn AJ, Gutbrod MJ, LeBlanc C, et al. LTR-Retrotransposon Control by tRNA-Derived Small RNAs. Cell. 2017;170:61–71 e11. doi:10.1016/j.cell.2017.06.013
  • Cole C, Sobala A, Lu C, et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA. 2009;15:2147–60. doi:10.1261/rna.1738409
  • Sobala A, Hutvagner G. Small RNAs derived from the 5' end of tRNA can inhibit protein translation in human cells. RNA Biol. 2013;10:553–63. doi:10.4161/rna.24285
  • Gebetsberger J, Wyss L, Mleczko AM, et al. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2016:1–10.
  • Li S, Liu L, Zhuang X, et al. MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell. 2013;153:562–74. doi:10.1016/j.cell.2013.04.005
  • Llave C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002;297:2053–6. doi:10.1126/science.1076311
  • Vourekas A, Alexiou P, Vrettos N, et al. Sequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasm. Nature. 2016;531:390–4. doi:10.1038/nature17150
  • Marquet R, Isel C, Ehresmann C, et al. tRNAs as primer of reverse transcriptases. Biochimie. 1995;77:113–24. doi:10.1016/0300-9084(96)88114-4
  • Mak J, Kleiman L. Primer tRNAs for reverse transcription. Journal of Virology. 1997;71:8087–95.
  • Gingold H, Tehler D, Christoffersen NR, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell. 2014;158:1281–92. doi:10.1016/j.cell.2014.08.011
  • Molla-Herman A, Valles AM, Ganem-Elbaz C, et al. tRNA processing defects induce replication stress and Chk2-dependent disruption of piRNA transcription. EMBO J. 2015;34:3009–27. doi:10.15252/embj.201591006
  • Hunter RG, Gagnidze K, McEwen BS, et al. Stress and the dynamic genome: Steroids, epigenetics, and the transposome. Proc Natl Acad Sci U S A. 2015;112:6828–33. doi:10.1073/pnas.1411260111
  • Probst AV, Mittelsten Scheid O. Stress-induced structural changes in plant chromatin. Curr Opin Plant Biol. 2015;27:8–16. doi:10.1016/j.pbi.2015.05.011
  • Pizzo E, Sarcinelli C, Sheng J, et al. Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival. J Cell Sci. 2013;126:4308–19. doi:10.1242/jcs.134551
  • Garcia-Lopez J, Hourcade Jde D, Alonso L, et al. Global characterization and target identification of piRNAs and endo-siRNAs in mouse gametes and zygotes. Biochim Biophys Acta. 2014;1839:463–75. doi:10.1016/j.bbagrm.2014.04.006
  • Sharma U, Conine CC, Shea JM, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–6. doi:10.1126/science.aad6780
  • Chen Q, Yan M, Cao Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400. doi:10.1126/science.aad7977
  • Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet. 2014;15:613–24. doi:10.1038/nrg3685
  • Seisenberger S, Peat JR, Hore TA, et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110330. doi:10.1098/rstb.2011.0330
  • Feng S, Jacobsen SE, Reik W. Epigenetic reprogramming in plant and animal development. Science. 2010;330:622–7. doi:10.1126/science.1190614
  • Creasey KM, Zhai J, Borges F, et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature. 2014;508:411–5. doi:10.1038/nature13069
  • Di Giulio M. The origin of the tRNA molecule: Independent data favor a specific model of its evolution. Biochimie. 2012;94:1464–6. doi:10.1016/j.biochi.2012.01.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.