3,815
Views
40
CrossRef citations to date
0
Altmetric
Review - Solicited

Drugging tRNA aminoacylation

ORCID Icon, , ORCID Icon &
Pages 667-677 | Received 22 Nov 2017, Accepted 27 Dec 2017, Published online: 02 Feb 2018

References

  • Ibba M, Soll D. Quality control mechanisms during translation. Science. 1999;286:1893–7. doi:10.1126/science.286.5446.1893
  • Ibba M, Curnow AW, Soll D. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci. 1997;22:39–42. doi:10.1016/S0968-0004(96)20033-7
  • Smith YA. tRNA on the ribosome: A waggle theory. tRNA: Structure, biosynthesis and function. Washington: DC: ASM Press; 1995.pp. 443–69
  • Lincecum TL, Jr., Tukalo M, Yaremchuk A, et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol Cell. 2003;11:951–63. doi:10.1016/S1097-2765(03)00098-4
  • Ibba M, Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000;69:617–50. doi:10.1146/annurev.biochem.69.1.617
  • de Duve C Transfer RNAs: The second genetic code. Nature. 1988;333:117–8. doi:10.1038/333117a0
  • Fersht AR, Ashford JS, Bruton CJ, et al. Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry. 1975;14:1–4. doi:10.1021/bi00672a001
  • Francklyn CS, First EA, Perona JJ, et al. Methods for kinetic and thermodynamic analysis of aminoacyl-tRNA synthetases. Methods. 2008;44:100–18. doi:10.1016/j.ymeth.2007.09.007
  • Cestari I, Stuart K. A spectrophotometric assay for quantitative measurement of aminoacyl-tRNA synthetase activity. J Biomol Screen. 2013;18:490–7. doi:10.1177/1087057112465980
  • Loftfield RB. The mechanism of aminoacylation of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1972;12:87–128. doi:10.1016/S0079-6603(08)60660-1
  • Eigner EA, Loftfield RB. Kinetic techniques for the investigation of amino acid: tRNA ligases (aminoacyl-tRNA synthetases, amino acid activating enzymes). Methods Enzymol. 1974;29:601–19. doi:10.1016/0076-6879(74)29053-0
  • Wolfson AD, Pleiss JA, Uhlenbeck OC. A new assay for tRNA aminoacylation kinetics. RNA. 1998;4:1019–23. doi:10.1017/S1355838298980700
  • Sun T, Zhang Y. Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation. Nucleic Acids Res. 2008;36:1654–64. doi:10.1093/nar/gkm1180
  • Orelle C, Szal T, Klepacki D, et al. Identifying the targets of aminoacyl-tRNA synthetase inhibitors by primer extension inhibition. Nucleic Acids Res. 2013;41:e144. doi:10.1093/nar/gkt526
  • Tuckey C, Asahara H, Zhou Y, et al. Protein synthesis using a reconstituted cell-free system. Curr Protoc Mol Biol. 2014;108: 16 31 1–22
  • Vondenhoff GH, Van Aerschot A. Aminoacyl-tRNA synthetase inhibitors as potential antibiotics. Eur J Med Chem. 2011;46:5227–36. doi:10.1016/j.ejmech.2011.08.049
  • Chopra S, Reader J. tRNAs as antibiotic targets. Int J Mol Sci. 2014;16:321–49. doi:10.3390/ijms16010321
  • Lionta E, Spyrou G, Vassilatis DK, et al. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. 2014;14:1923–38. doi:10.2174/1568026614666140929124445
  • Coates AR, Halls G, Hu Y. Novel classes of antibiotics or more of the same? Br J Pharmacol. 2011;163:184–94. doi:10.1111/j.1476-5381.2011.01250.x
  • Becker D, Selbach M, Rollenhagen C, et al. Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature. 2006;440:303–7. doi:10.1038/nature04616
  • Loman NJ, Pallen MJ. Twenty years of bacterial genome sequencing. Nature reviews Microbiology. 2015;13:787–94. doi:10.1038/nrmicro3565
  • Fang P, Guo M. Evolutionary limitation and opportunities for developing tRNA synthetase inhibitors with 5-binding-mode classification. Life (Basel). 2015;5:1703–25
  • Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12:35–48. doi:10.1038/nrmicro3155
  • Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8:423–35. doi:10.1038/nrmicro2333
  • O'Donoghue P, Luthey-Schulten Z. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol Mol Biol Rev. 2003;67:550–73. doi:10.1128/MMBR.67.4.550-573.2003
  • Marck C, Grosjean H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA. 2002;8:1189–232. doi:10.1017/S1355838202022021
  • Woese CR, Olsen GJ, Ibba M, et al. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev. 2000;64:202–36. doi:10.1128/MMBR.64.1.202-236.2000
  • Schimmel P, Tao J, Hill J. Aminoacyl tRNA synthetases as targets for new anti-infectives. Faseb J. 1998;12:1599–609
  • Silvian LF, Wang J, Steitz TA. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science. 1999;285:1074–7. doi:10.1126/science.285.5430.1074
  • Pines M, Spector I. Halofuginone – the multifaceted molecule. Molecules. 2015;20:573–94. doi:10.3390/molecules20010573
  • Tavaborole topical solution (Kerydin) for onychomycosis. Med Lett Drugs Ther. 2015;57:35–6
  • Hughes J, Mellows G. Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J. 1980;191:209–19. doi:10.1042/bj1910209
  • Nakama T, Nureki O, Yokoyama S. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J Biol Chem. 2001;276:47387–93. doi:10.1074/jbc.M109089200
  • Zhou H, Sun L, Yang XL, et al. ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase. Nature. 2013;494:121–4. doi:10.1038/nature11774
  • Abibi A, Ferguson AD, Fleming PR, et al. The role of a novel auxiliary pocket in bacterial phenylalanyl-tRNA synthetase druggability. J Biol Chem. 2014;289:21651–62. doi:10.1074/jbc.M114.574061
  • Fang P, Yu X, Jeong SJ, et al. Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase. Nat Commun. 2015;6:6402. doi:10.1038/ncomms7402
  • Giege R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 1998;26:5017–35. doi:10.1093/nar/26.22.5017
  • Freyhult E, Moulton V, Ardell DH. Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos. Nucleic Acids Res. 2006;34:905–16. doi:10.1093/nar/gkj478
  • Ardell DH. Computational analysis of tRNA identity. FEBS letters. 2010;584:325–33. doi:10.1016/j.febslet.2009.11.084
  • Saks ME, Sampson JR, Abelson JN. The transfer RNA identity problem: A search for rules. Science. 1994;263:191–7. doi:10.1126/science.7506844
  • Giege R. Toward a more complete view of tRNA biology. Nat Struct Mol Biol. 2008;15:1007–14. doi:10.1038/nsmb.1498
  • Carter CW, Jr., Wolfenden R. tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proc Natl Acad Sci U S A. 2015;112:7489–94. doi:10.1073/pnas.1507569112
  • Crothers DM, Seno T, Soll G. Is there a discriminator site in transfer RNA? Proc Natl Acad Sci U S A. 1972;69:3063–7. doi:10.1073/pnas.69.10.3063
  • Wende S, Bonin S, Gotze O, et al. The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Res. 2015;43:5617–29. doi:10.1093/nar/gkv471
  • Ambrogelly A, Gundllapalli S, Herring S, et al. Pyrrolysine is not hardwired for cotranslational insertion at UAG codons. Proc Natl Acad Sci U S A. 2007;104:3141–6. doi:10.1073/pnas.0611634104
  • Shiba K, Motegi H, Schimmel P. Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains. Trends Biochem Sci. 1997;22:453–7. doi:10.1016/S0968-0004(97)01135-3
  • Putz J, Giege R, Florentz C. Diversity and similarity in the tRNA world: overall view and case study on malaria-related tRNAs. FEBS letters. 2010;584:350–8. doi:10.1016/j.febslet.2009.11.050
  • Salinas-Giege T, Giege R, Giege P. tRNA biology in mitochondria. Int J Mol Sci. 2015;16:4518–59. doi:10.3390/ijms16034518
  • Geslain R, Pan T. Functional analysis of human tRNA isodecoders. J Mol Biol. 2010;396:821–31. doi:10.1016/j.jmb.2009.12.018
  • Breitschopf K, Gross HJ. The exchange of the discriminator base A73 for G is alone sufficient to convert human tRNA(Leu) into a serine-acceptor in vitro. EMBO J. 1994;13:3166–9
  • Achsel T, Gross HJ. Identity determinants of human tRNA(Ser): sequence elements necessary for serylation and maturation of a tRNA with a long extra arm. EMBO J. 1993;12:3333–8
  • Stehlin C, Burke B, Yang F, et al. Species-specific differences in the operational RNA code for aminoacylation of tRNAPro. Biochemistry. 1998;37:8605–13. doi:10.1021/bi980364s
  • Hipps D, Shiba K, Henderson B, et al. Operational RNA code for amino acids: species-specific aminoacylation of minihelices switched by a single nucleotide. Proc Natl Acad Sci U S A. 1995;92:5550–2. doi:10.1073/pnas.92.12.5550
  • Nazarenko IA, Peterson ET, Zakharova OD, et al. Recognition nucleotides for human phenylalanyl-tRNA synthetase. Nucleic Acids Res. 1992;20:475–8. doi:10.1093/nar/20.3.475
  • Pham JS, Dawson KL, Jackson KE, et al. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int J Parasitol Drugs Drug Resist. 2014;4:1–13. doi:10.1016/j.ijpddr.2013.10.001
  • Foth BJ, McFadden GI. The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. Int Rev Cytol. 2003;224:57–110. doi:10.1016/S0074-7696(05)24003-2
  • Larson ET, Kim JE, Zucker FH, et al. Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate. Biochimie. 2011;93:570–82. doi:10.1016/j.biochi.2010.11.015
  • Larson ET, Kim JE, Castaneda LJ, et al. The double-length tyrosyl-tRNA synthetase from the eukaryote Leishmania major forms an intrinsically asymmetric pseudo-dimer. J Mol Biol. 2011;409:159–76. doi:10.1016/j.jmb.2011.03.026
  • Grosjean H, de Crecy-Lagard V, Marck C. Deciphering synonymous codons in the three domains of life: Co-evolution with specific tRNA modification enzymes. FEBS letters. 2010;584:252–64. doi:10.1016/j.febslet.2009.11.052
  • Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev. 2016;116:12655–87. doi:10.1021/acs.chemrev.6b00114
  • Cantara WA, Crain PF, Rozenski J, et al. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 2011;39:D195–201. doi:10.1093/nar/gkq1028
  • Machnicka MA, Milanowska K, Osman Oglou O, et al. MODOMICS: A database of RNA modification pathways–2013 update. Nucleic Acids Res. 2013;41:D262–7. doi:10.1093/nar/gks1007
  • Machnicka MA, Olchowik A, Grosjean H, et al. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 2014;11:1619–29. doi:10.4161/15476286.2014.992273
  • Giegé R LJ. Transfer RNA aminoacylation and modified nucleosides. In: H G, ed. DNA and RNA modification enzymes: Structure, mechanism, function and evolution. Austin, Texas, USA: Landes Bioscience; 2009.p. 476–92
  • Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res. 2016;44:8020–40. doi:10.1093/nar/gkw608
  • Perret V, Garcia A, Grosjean H, et al. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature. 1990;344:787–9. doi:10.1038/344787a0
  • Putz J, Florentz C, Benseler F, et al. A single methyl group prevents the mischarging of a tRNA. Nat Struct Biol. 1994;1:580–2. doi:10.1038/nsb0994-580
  • Limbach PA, Crain PF, McCloskey JA. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 1994;22:2183–96. doi:10.1093/nar/22.12.2183
  • Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis. 2009;48:1–12. doi:10.1086/595011
  • Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013;11:297–308. doi:10.1586/eri.13.12
  • Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy. Mayo Clin Proc. 2011;86:156–67. doi:10.4065/mcp.2010.0639
  • Bonnefond L, Giege R, Rudinger-Thirion J. Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems. Biochimie. 2005;87:873–83. doi:10.1016/j.biochi.2005.03.008
  • Becker HD, Giege R, Kern D. Identity of prokaryotic and eukaryotic tRNA(Asp) for aminoacylation by aspartyl-tRNA synthetase from Thermus thermophilus. Biochemistry. 1996;35:7447–58. doi:10.1021/bi9601058
  • Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44:3249–56. doi:10.1128/AAC.44.12.3249-3256.2000
  • Davis BD. Mechanism of bactericidal action of aminoglycosides. Microbiol Rev. 1987;51:341–50
  • Mikkelsen NE, Johansson K, Virtanen A, et al. Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Nat Struct Biol. 2001;8:510–4. doi:10.1038/88569
  • Kirk SR, Tor Y. tRNA(Phe) binds aminoglycoside antibiotics. Bioorg Med Chem. 1999;7:1979–91. doi:10.1016/S0968-0896(99)00170-4
  • Discovery T. Staphylococcus aureus 201 HTS-assay white paper. 2011
  • Walter F, Putz J, Giege R, et al. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation. EMBO J. 2002;21:760–8. doi:10.1093/emboj/21.4.760
  • Wang B, Wilkinson KA, Weeks KM. Complex ligand-induced conformational changes in tRNA(Asp) revealed by single-nucleotide resolution SHAPE chemistry. Biochemistry. 2008;47:3454–61. doi:10.1021/bi702372x
  • Hori Y, Bichenkova EV, Wilton AN, et al. Synthetic inhibitors of the processing of pretransfer RNA by the ribonuclease P ribozyme: enzyme inhibitors which act by binding to substrate. Biochemistry. 2001;40:603–8. doi:10.1021/bi002378f
  • Hori Y, Rogert MC, Tanaka T, et al. Porphyrins and porphines bind strongly and specifically to tRNA, precursor tRNA and to M1 RNA and inhibit the ribonuclease P ribozyme reaction. Biochim Biophys Acta. 2005;1730:47–55. doi:10.1016/j.bbaexp.2005.06.003
  • Rock FL, Mao W, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science. 2007;316:1759–61. doi:10.1126/science.1142189
  • Chopra S, Palencia A, Virus C, et al. Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase. Nat Commun. 2013;4:1417. doi:10.1038/ncomms2421
  • Kirillov S, Vitali LA, Goldstein BP, et al. Purpuromycin: an antibiotic inhibiting tRNA aminoacylation. Rna. 1997;3:905–13
  • Liu Y, Tidwell RR, Leibowitz MJ. Inhibition of in vitro splicing of a group I intron of Pneumocystis carinii. J Eukaryot Microbiol. 1994;41:31–8. doi:10.1111/j.1550-7408.1994.tb05931.x
  • Miletti KE, Leibowitz MJ. Pentamidine inhibition of group I intron splicing in Candida albicans correlates with growth inhibition. Antimicrob Agents Chemother. 2000;44:958–66. doi:10.1128/AAC.44.4.958-966.2000
  • Zhang Y, Bell A, Perlman PS, et al. Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae. RNA. 2000;6:937–51. doi:10.1017/S1355838200991726
  • Putignano V, Rosato A, Banci L, et al. MetalPDB in 2018: A database of metal sites in biological macromolecular structures. Nucleic Acids Res. 2018;46(D1):D459–D464. doi:10.1093/nar/gkx989
  • Draper DE. A guide to ions and RNA structure. RNA. 2004;10:335–43. doi:10.1261/rna.5205404
  • Hermann T. Strategies for the Design of Drugs Targeting RNA and RNA-Protein Complexes. Angewandte Chemie. 2000;39:1890–904. doi:10.1002/1521-3773(20000602)39:11%3c1890::AID-ANIE1890%3e3.0.CO;2-D
  • Chen L, Calin GA, Zhang S. Novel insights of structure-based modeling for RNA-targeted drug discovery. J Chem Inf Model. 2012;52:2741–53. doi:10.1021/ci300320t
  • Deutscher M. The Effect of Polynucleotides on Aminoacyl-Rna Synthetases. 1. Inhibition by Synthetic Polynucleotides Biochem Biophys Res Commun. 1965;19:283–8. doi:10.1016/0006-291X(65)90455-9
  • Beltchev B, Grunberg-Manago M. Competitive inhibition of the acceptor activity of tRNA(Tyr II)(E. coli) by a combination of oligo G and a CCA terminated nineteen residue oligonucleotide of tRNA(Tyr II)(E. coli). FEBS letters. 1970;12:27–9. doi:10.1016/0014-5793(70)80586-5
  • Schimmel P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem. 1987;56:125–58. doi:10.1146/annurev.bi.56.070187.001013
  • Moulinier L, Eiler S, Eriani G, et al. The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. EMBO J. 2001;20:5290–301. doi:10.1093/emboj/20.18.5290
  • Wolf YI, Aravind L, Grishin NV, et al. Evolution of aminoacyl-tRNA synthetases–analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 1999;9:689–710
  • Keeling PJ. Genomics: Evolution of the genetic code. Curr Biol. 2016;26:R851–R3. doi:10.1016/j.cub.2016.08.005
  • Mukai T, Englert M, Tripp HJ, et al. Facile Recoding of Selenocysteine in Nature. Angewandte Chemie. 2016;55:5337–41. doi:10.1002/anie.201511657
  • Fukai S, Nureki O, Sekine S, et al. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell. 2000;103:793–803. doi:10.1016/S0092-8674(00)00182-3
  • Bai F, Morcos F, Cheng RR, et al. Elucidating the druggable interface of protein-protein interactions using fragment docking and coevolutionary analysis. Proc Natl Acad Sci U S A. 2016;113:E8051–E8. doi:10.1073/pnas.1615932113
  • Watkins AM, Arora PS. Structure-based inhibition of protein-protein interactions. Eur J Med Chem. 2015;94:480–8. doi:10.1016/j.ejmech.2014.09.047
  • Forster C, Szkaradkiewicz K, Perbandt M, et al. Human tRNA(Gly) acceptor-stem microhelix: crystallization and preliminary X-ray diffraction analysis at 1.2 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63:858–61. doi:10.1107/S1744309107041528
  • Shiba K, Schimmel P, Motegi H, et al. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation J Biol Chem. 1994;269:30049–55
  • Mazauric MH, Reinbolt J, Lorber B, et al. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. Eur J Biochem/FEBS. 1996;241:814–26. doi:10.1111/j.1432-1033.1996.00814.x
  • Qin X, Hao Z, Tian Q, et al. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation. J Biol Chem. 2014;289:20359–69. doi:10.1074/jbc.M114.557249
  • Rodova M, Ankilova V, Safro MG. Human phenylalanyl-tRNA synthetase: cloning, characterization of the deduced amino acid sequences in terms of the structural domains and coordinately regulated expression of the alpha and beta subunits in chronic myeloid leukemia cells. Biochem Biophys Res Commun. 1999;255:765–73. doi:10.1006/bbrc.1999.0141
  • Finarov I, Moor N, Kessler N, et al. Structure of human cytosolic phenylalanyl-tRNA synthetase: evidence for kingdom-specific design of the active sites and tRNA binding patterns. Structure. 2010;18:343–53. doi:10.1016/j.str.2010.01.002
  • Abibi A, Ferguson AD, Fleming PR, et al. The role of a novel auxiliary pocket in bacterial phenylalanyl-tRNA synthetase druggability. J Biol Chem. 2014;289:21651–62. doi:10.1074/jbc.M114.574061
  • Palencia A, Crepin T, Vu MT, et al. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol. 2012;19:677–84. doi:10.1038/nsmb.2317
  • Deng X, Qin X, Chen L, et al. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis. J Biol Chem. 2016;291:5740–52. doi:10.1074/jbc.M115.679126
  • Wang C, Guo Y, Tian Q, et al. SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis. Nucleic Acids Res. 2015;43:10534–45
  • Shen N, Guo L, Yang B, et al. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Nucleic Acids Res. 2006;34:3246–58. doi:10.1093/nar/gkl441
  • Crick FH. The origin of the genetic code. J Mol Biol. 1968;38:367–79. doi:10.1016/0022-2836(68)90392-6
  • Breitschopf K, Achsel T, Busch K, et al. Identity elements of human tRNA(Leu): structural requirements for converting human tRNA(Ser) into a leucine acceptor in vitro. Nucleic Acids Res. 1995;23:3633–7. doi:10.1093/nar/23.18.3633
  • Hou YM, Schimmel P. Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution. Biochemistry. 1989;28:6800–4. doi:10.1021/bi00443a003
  • Juhling F, Morl M, Hartmann RK, et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 2009;37:D159–62. doi:10.1093/nar/gkn772

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.