3,032
Views
32
CrossRef citations to date
0
Altmetric
Point of View

Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

, &
Pages 314-319 | Received 22 Dec 2017, Accepted 08 Feb 2018, Published online: 09 Mar 2018

References

  • Negrutskii BS, El'skaya AV. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol. 1998;60:47–78. doi:10.1016/S0079-6603(08)60889-2
  • Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA. 2012;3:543–555. doi:10.1002/wrna.1118
  • Andersen GR, Pedersen L, Valente L, et al. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Balpha. Mol Cell. 2000;6:1261–1266. doi:10.1016/S1097-2765(00)00122-2
  • Mateyak MK, Kinzy TG. eEF1A: thinking outside the ribosome. J Biol Chem. 2010;285:21209–21213. doi:10.1074/jbc.R110.113795
  • Jakobsson ME, Davydova E, Malecki J, et al. Saccharomyces cerevisiae Eukaryotic Elongation Factor 1A (eEF1A) Is Methylated at Lys-390 by a METTL21-Like Methyltransferase. PLoS ONE. 2015;10:e0131426. doi:10.1371/journal.pone.0131426
  • Abbas W, Kumar A, Herbein G. The eEF1A Proteins: At the Crossroads of Oncogenesis, Apoptosis, and Viral Infections. Front Oncol. 2015;5:75. doi:10.3389/fonc.2015.00075
  • Kim S, Coulombe PA. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat Rev Mol Cell Biol. 2010;11:75–81. doi:10.1038/nrm2818
  • Yang F, Demma M, Warren V, et al. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990;347:494–496. doi:10.1038/347494a0
  • Demma M, Warren V, Hock R, et al. Isolation of an abundant 50,000-dalton actin filament bundling protein from Dictyostelium amoebae. J Biol Chem. 1990;265:2286–2291.
  • Munshi R, Kandl KA, Carr-Schmid A, et al. Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast. Genetics. 2001;157:1425–1436.
  • Gross SR, Kinzy TG. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol. 2005;12:772–778. doi:10.1038/nsmb979
  • Li D, Wei T, Abbott CM, et al. The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. Microbiol Mol Biol Rev. 2013;77:253–266. doi:10.1128/MMBR.00059-12
  • Whiteheart SW, Shenbagamurthi P, Chen L, et al. Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha. J Biol Chem. 1989;264:14334–14341.
  • Dever TE, Costello CE, Owens CL, et al. Location of seven post-translational modifications in rabbit elongation factor 1 alpha including dimethyllysine, trimethyllysine, and glycerylphosphorylethanolamine. J Biol Chem. 1989;264:20518–20525.
  • Jank T, Belyi Y, Wirth C, et al. Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A. J Biol Chem. 2017;292:16014–16023. doi:10.1074/jbc.M117.801035
  • Hornbeck PV, Zhang B, Murray B, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–D520. doi:10.1093/nar/gku1267
  • Lin KW, Yakymovych I, Jia M, et al. Phosphorylation of eEF1A1 at Ser300 by TbetaR-I results in inhibition of mRNA translation. Curr Biol. 2010;20:1615–1625. doi:10.1016/j.cub.2010.08.017
  • Sanges C, Scheuermann C, Zahedi RP, et al. Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells. Cell Death Dis. 2012;3:e276. doi:10.1038/cddis.2012.16
  • Hamey JJ, Winter DL, Yagoub D, et al. Novel N-terminal and lysine methyltransferases that target translation elongation factor 1A in yeast and human. Mol Cell Proteomics. 2015;15:164–176. doi:10.1074/mcp.M115.052449
  • Zobel-Thropp P, Yang MC, Machado L, et al. A novel post-translational modification of yeast elongation factor 1A. Methylesterification at the C terminus. J Biol Chem. 2000;275:37150–37158. doi:10.1074/jbc.M001005200
  • Hiatt WR, Garcia R, Merrick WC, et al. Methylation of elongation factor 1 alpha from the fungus Mucor. Proc Natl Acad Sci U S A. 1982;79:3433–3437. doi:10.1073/pnas.79.11.3433
  • Cavallius J, Zoll W, Chakraburtty K, et al. Characterization of yeast EF-1 alpha: non-conservation of post-translational modifications. Biochim Biophys Acta. 1993;1163:75–80. doi:10.1016/0167-4838(93)90281-U
  • Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci. 2013;38:621–639. doi:10.1016/j.tibs.2013.09.004
  • Falnes PO, Jakobsson ME, Davydova E, et al. Protein lysine methylation by seven-β-strand methyltransferases. Biochem J. 2016;473:1995–2009. doi:10.1042/BCJ20160117
  • Lipson RS, Webb KJ, Clarke SG. Two novel methyltransferases acting upon eukaryotic elongation factor 1A in Saccharomyces cerevisiae. Arch Biochem Biophys. 2010;500:137–143. doi:10.1016/j.abb.2010.05.023
  • Couttas TA, Raftery MJ, Padula MP, et al. Methylation of translation-associated proteins in Saccharomyces cerevisiae: Identification of methylated lysines and their methyltransferases. Proteomics. 2012;12:960–972. doi:10.1002/pmic.201100570
  • Dzialo MC, Travaglini KJ, Shen S, et al. A new type of protein lysine methyltransferase trimethylates Lys-79 of elongation factor 1A. Biochem Biophys Res Commun. 2014;455:382–389. doi:10.1016/j.bbrc.2014.11.022
  • Shimazu T, Barjau J, Sohtome Y, et al. Selenium-based S-adenosylmethionine analog reveals the mammalian seven-beta-strand methyltransferase METTL10 to be an EF1A1 lysine methyltransferase. PLoS ONE. 2014;9:e105394. doi:10.1371/journal.pone.0105394
  • Cloutier P, Lavallee-Adam M, Faubert D, et al. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet. 2013;9:e1003210. doi:10.1371/journal.pgen.1003210
  • Kernstock S, Davydova E, Jakobsson M, et al. Lysine methylation of VCP by a member of a novel human protein methyltransferase family. Nat Commun. 2012;3:1038. doi:10.1038/ncomms2041
  • Malecki J, Aileni VK, Ho AY, et al. The novel lysine specific methyltransferase METTL21B affects mRNA translation through inducible and dynamic methylation of Lys-165 in human eukaryotic elongation factor 1 alpha (eEF1A). Nucleic Acids Res. 2017;45:4370–4389.
  • Hamey JJ, Wienert B, Quinlan KGR, et al. METTL21B Is a Novel Human Lysine Methyltransferase of Translation Elongation Factor 1A: Discovery by CRISPR/Cas9 Knockout. Mol Cell Proteomics. 2017;16:2229–2242. doi:10.1074/mcp.M116.066308
  • Jakobsson ME, Malecki J, Nilges BS, et al. Methylation of human eukaryotic elongation factor alpha (eEF1A) by a member of a novel protein lysine methyltransferase family modulates mRNA translation. Nucleic Acids Res. 2017;45:8239–8254. doi:10.1093/nar/gkx432
  • Malecki J, Jakobsson ME, Ho AYY, et al. Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation. J Biol Chem. 2017;292:17950–17962. doi:10.1074/jbc.M117.808451
  • Rhein VF, Carroll J, Ding S, et al. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase. FEBS Lett. 2017;591:1641–1652. doi:10.1002/1873-3468.12649
  • Dimitrova E, Turberfield AH, Klose RJ. Histone demethylases in chromatin biology and beyond. EMBO Rep. 2015;16:1620–1639. doi:10.15252/embr.201541113
  • Taverna SD, Li H, Ruthenburg AJ, et al. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14:1025–1040. doi:10.1038/nsmb1338
  • Bendjilali N, MacLeon S, Kalra G, et al. Time-Course Analysis of Gene Expression During the Saccharomyces cerevisiae Hypoxic Response. G3 (Bethesda ). 2017;7:221–231. doi:10.1534/g3.116.034991
  • Cavallius J, Popkie AP, Merrick WC. Site-directed mutants of post-translationally modified sites of yeast eEF1A using a shuttle vector containing a chromogenic switch. Biochim Biophys Acta. 1997;1350:345–358. doi:10.1016/S0167-4781(96)00181-9
  • Li Z, Gonzalez PA, Sasvari Z, et al. Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology. 2014;448:43–54. doi:10.1016/j.virol.2013.09.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.