2,066
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Characterization of cis-acting elements that control oscillating alternative splicing

, ORCID Icon, , , &
Pages 1081-1092 | Received 24 Jan 2018, Accepted 08 Jul 2018, Published online: 10 Sep 2018

References

  • Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336. PubMed PMID: 12626338; eng.
  • Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008 Dec;40(12):1413–1415. PubMed PMID: 18978789; eng.
  • Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008 Nov 27;456(7221):470–476. PubMed PMID: 18978772; PubMed Central PMCID: PMCPmc2593745. eng.
  • Tress ML, Abascal F, Valencia A. Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 2017 Feb;42(2):98–110. PubMed PMID: 27712956; eng.
  • Blencowe BJ. The relationship between alternative splicing and proteomic complexity. Trends Biochem Sci. 2017 Jun;42(6):407–408. PubMed PMID: 28483376; eng.
  • Gabut M, Samavarchi-Tehrani P, Wang X, et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell. 2011 Sep 30;147(1):132–146. PubMed PMID: 21924763; eng.
  • Wollscheid HP, Biancospino M, He F, et al. Diverse functions of myosin VI elucidated by an isoform-specific alpha-helix domain. Nat Struct Mol Biol. 2016 Apr;23(4):300–308. PubMed PMID: 26950368; PubMed Central PMCID: PMCPMC4964928. eng.
  • Kanemori Y, Koga Y, Sudo M, et al. Biogenesis of sperm acrosome is regulated by pre-mRNA alternative splicing of Acrbp in the mouse. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3696–E705. PubMed PMID: 27303034; PubMed Central PMCID: PMCPMC4932935. eng.
  • Wilhelmi I, Kanski R, Neumann A, et al. Sec16 alternative splicing dynamically controls COPII transport efficiency. Nat Commun. 2016 Aug;05(7):12347. PubMed PMID: 27492621; PubMed Central PMCID: PMCPMC4980449. eng.
  • Galarza-Munoz G, Briggs FBS, Evsyukova I, et al. Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell. 2017 Mar 23;169(1):72–84.e13. PubMed PMID: 28340352; PubMed Central PMCID: PMCPMC5456452. eng.
  • Ellis JD, Barrios-Rodiles M, Colak R, et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell. 2012 Jun 29;46(6):884–892. PubMed PMID: 22749401; eng
  • Yang X, Coulombe-Huntington J, Kang S, et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell. 2016 Feb 11;164(4):805–817. PubMed PMID: 26871637; PubMed Central PMCID: PMCPmc4882190. eng.
  • Barash Y, Calarco JA, Gao W, et al. Deciphering the splicing code. Nature. 2010 May 6;465(7294):53–59. PubMed PMID: 20445623; eng.
  • Xiong HY, Alipanahi B, Lee LJ, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science (New York, NY). 2015 Jan 09;347(6218):1254806. PubMed PMID: 25525159; PubMed Central PMCID: PMCPMC4362528. eng.
  • Schultz AS, Preussner M, Bunse M, et al. Activation-dependent TRAF3 exon 8 alternative splicing is controlled by CELF2 and hnRNP C binding to an upstream intronic element. Mol Cell Biol. 2017 Apr 1;37(7). DOI:10.1128/mcb.00488-16. PubMed PMID: 28031331; PubMed Central PMCID: PMCPMC5359431. eng.
  • Heyd F, Lynch KW. Degrade, move, regroup: signaling control of splicing proteins. Trends Biochem Sci. 2011 Aug;36(8):397–404. PubMed PMID: 21596569; PubMed Central PMCID: PMCPMC3155649. eng.
  • Fu XD, Ares M Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014 Oct;15(10):689–701. PubMed PMID: 25112293; PubMed Central PMCID: PMCPMC4440546. eng.
  • Preussner M, Schreiner S, Hung LH, et al. HnRNP L and L-like cooperate in multiple-exon regulation of CD45 alternative splicing. Nucleic Acids Res. 2012 Jul;40(12):5666–5678. PubMed PMID: 22402488; PubMed Central PMCID: PMCPMC3384337. eng.
  • Julien P, Minana B, Baeza-Centurion P, et al. The complete local genotype-phenotype landscape for the alternative splicing of a human exon. Nat Commun. 2016 May;10(7):11558. PubMed PMID: 27161764; PubMed Central PMCID: PMCPMC4866304. eng.
  • Gao Q, Sun W, Ballegeer M, et al. Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol Syst Biol. 2015 Jul 01;11(7):816. PubMed PMID: 26134616; PubMed Central PMCID: PMCPMC4547845. eng.
  • Barbosa-Morais NL, Irimia M, Pan Q, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science (New York, NY). 2012 Dec 21;338(6114):1587–1593. PubMed PMID: 23258890; eng.
  • Lorson CL, Hahnen E, Androphy EJ, et al. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6307–6311. PubMed PMID: 10339583; PubMed Central PMCID: PMCPMC26877. eng..
  • Herdt O, Neumann A, Timmermann B, et al. The cancer-associated U2AF35 470A>G (Q157R) mutation creates an in-frame alternative 5ʹ splice site that impacts splicing regulation in Q157R patients. RNA (New York, NY). 2017 Dec;23(12):1796–1806. PubMed PMID: 28893951; PubMed Central PMCID: PMCPMC5689001. eng.
  • Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016 Jan;17(1):19–32. PubMed PMID: 26593421; eng.
  • Preussner M, Wilhelmi I, Schultz AS, et al. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice. Mol Cell. 2014 May 22;54(4):651–662. PubMed PMID: 24837677; eng.
  • Preussner M, Goldammer G, Neumann A, et al. Body temperature cycles control rhythmic alternative splicing in mammals. Mol Cell. 2017 Aug 03;67(3):433–446.e4. PubMed PMID: 28689656; eng.
  • Darlington TK, Lyons LC, Hardin PE, et al. The period E-box is sufficient to drive circadian oscillation of transcription in vivo. J Biol Rhythms. 2000 Dec;15(6):462–471. PubMed PMID: 11106063; eng.
  • Bunger MK, Wilsbacher LD, Moran SM, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000 Dec 22;103(7):1009–1017. PubMed PMID: 11163178; PubMed Central PMCID: PMCPMC3779439. eng.
  • Gekakis N, Staknis D, Nguyen HB, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science (New York, NY). 1998 Jun 05;280(5369):1564–1569. PubMed PMID: 9616112; eng.
  • Kaiser TS, Poehn B, Szkiba D, et al. The genomic basis of circadian and circalunar timing adaptations in a midge. Nature. 2016 Dec 01;540(7631):69–73. PubMed PMID: 27871090; PubMed Central PMCID: PMCPMC5133387. eng.
  • Muller-McNicoll M, Botti V, de Jesus Domingues AM, et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 2016 Mar 1;30(5):553–566. PubMed PMID: 26944680; PubMed Central PMCID: PMCPmc4782049. eng.
  • Cavaloc Y, Bourgeois CF, Kister L, et al. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA (New York, NY). 1999 Mar;5(3):468–483. PubMed PMID: 10094314; PubMed Central PMCID: PMCPMC1369774. eng.
  • Liu HX, Chew SL, Cartegni L, et al. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol. 2000 Feb;20(3):1063–1071. PubMed PMID: 10629063; PubMed Central PMCID: PMCPMC85223. eng.
  • Liu Y, Hu W, Murakawa Y, et al. Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep. 2013;3:2054. . PubMed PMID: 23792593; PubMed Central PMCID: PMCPmc3690385. eng.
  • Han J, Ding JH, Byeon CW, et al. SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol Cell Biol. 2011 Feb;31(4):793–802. PubMed PMID: 21135118; PubMed Central PMCID: PMCPMC3028638. eng.
  • Erkelenz S, Mueller WF, Evans MS, et al. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA (New York, NY). 2013 Jan;19(1):96–102. PubMed PMID: 23175589; PubMed Central PMCID: PMCPMC3527730. eng.
  • Narberhaus F, Waldminghaus T, Chowdhury S. RNA thermometers. FEMS Microbiol Rev. 2006 Jan;30(1):3–16. PubMed PMID: 16438677; Eng.
  • Taliaferro JM, Lambert NJ, Sudmant PH, et al. RNA sequence context effects measured in vitro predict in vivo protein binding and regulation. Mol Cell. 2016 Oct 20;64(2):294–306. PubMed PMID: 27720642; PubMed Central PMCID: PMCPMC5107313.
  • Bradley T, Cook ME, Blanchette M. SR proteins control a complex network of RNA-processing events. RNA (New York, NY). 2015 Jan;21(1):75–92. PubMed PMID: 25414008; PubMed Central PMCID: PMCPMC4274639. eng.
  • Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012 Mar;7(3):562–578. PubMed PMID: 22383036; PubMed Central PMCID: PMCPmc3334321. eng.
  • Katz Y, Wang ET, Airoldi EM, et al. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010 Dec;7(12):1009–1015. PubMed PMID: 21057496; PubMed Central PMCID: PMCPmc3037023. Eng.
  • Bailey TL, Elkan C The value of prior knowledge in discovering motifs with MEME. Proc Int Conf on Intell Systems for Mol Biol. 1995;3:21–29. PubMed PMID: 7584439; eng.
  • Pandit S, Zhou Y, Shiue L, et al. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell. 2013 Apr 25;50(2):223–235. PubMed PMID: 23562324; PubMed Central PMCID: PMCPmc3640356. eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.