2,327
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification

ORCID Icon, , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 64-78 | Received 28 Jan 2020, Accepted 30 Jun 2020, Published online: 25 Jul 2020

References

  • Motorin Y, Muller S, Behm-Ansmant I, et al. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol. 2007;425:21–53.
  • Wilusz JE. Removing roadblocks to deep sequencing of modified RNAs. Nat Methods. 2015 Sep;12(9):821–822.
  • Shigematsu M, Honda S, Loher P, et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res. 2017 May 19;45(9):e70.
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009 Jan;10(1):57–63.
  • Trewick SC, Henshaw TF, Hausinger RP, et al. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature. 2002 Sep 12;419(6903):174–178.
  • Zheng G, Qin Y, Clark WC, et al. Efficient and quantitative high-throughput tRNA sequencing. Nat Methods. 2015 Sep;12(9):835–837.
  • Cozen AE, Quartley E, Holmes AD, et al. ARM-seq: alkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods. 2015 Sep;12(9):879.
  • Dai Q, Zheng G, Schwartz MH, et al. Selective enzymatic demethylation of N(2),N(2) -dimethylguanosine in RNA and its application in high-throughput tRNA sequencing. Angew Chem Int Ed Engl. 2017 Apr 24;56(18):5017–5020.
  • Smith AM, Abu-Shumays R, Akeson M, et al. Capture, unfolding, and detection of individual tRNA molecules using a nanopore device. Front Bioeng Biotechnol. 2015;3:91.
  • Pang YL, Abo R, Levine SS, et al. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res. 2014 Dec 16;42(22):e170.
  • Zhong J, Xiao C, Gu W, et al. Transfer RNAs mediate the rapid adaptation of Escherichia coli to oxidative stress. Plos Genet. 2015 Jun;11(6):e1005302.
  • Torres AG, Reina O, Stephan-Otto Attolini C, et al. Differential expression of human tRNA genes drives the abundance of tRNA-derived fragments. Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8451–8456.
  • Gogakos T, Brown M, Garzia A, et al. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep. 2017 Aug 8;20(6):1463–1475.
  • Hoffmann A, Fallmann J, Vilardo E, et al. Accurate mapping of tRNA reads. Bioinformatics. 2018 Jul 1;34(13):2339.
  • Rojas-Benitez D, Thiaville PC, de Crecy-lagard V, et al. The levels of a universally conserved tRNA modification regulate cell growth. J Biol Chem. 2015 Jul 24;290(30):18699–18707.
  • Lyons SM, Fay MM, Ivanov P. The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett. 2018 Sep;592(17):2828–2844.
  • Vermeulen A, McCallum SA, Pardi A. Comparison of the global structure and dynamics of native and unmodified tRNAval. Biochemistry. 2005 Apr 26;44(16):6024–6033.
  • Phizicky EM, Alfonzo JD. Do all modifications benefit all tRNAs? FEBS Lett. 2010 Jan 21;584(2):265–271.
  • Sampson JR, Uhlenbeck OC. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1033–1037.
  • Hou YM, Gamper H, Yang W. Post-transcriptional modifications to tRNA – a response to the genetic code degeneracy. RNA. 2015 Apr;21(4):642–644.
  • Urbonavicius J, Qian Q, Durand JM, et al. Improvement of reading frame maintenance is a common function for several tRNA modifications. Embo J. 2001 Sep 3;20(17):4863–4873.
  • Huber SM, Leonardi A, Dedon PC, et al. The versatile roles of the tRNA epitranscriptome during cellular responses to toxic exposures and environmental stress. Toxics. 2019 Mar 25;7(1). DOI:10.3390/toxics7010017
  • Phizicky EM, Hopper AK. tRNA processing, modification, and subcellular dynamics: past, present, and future. RNA. 2015 Apr;21(4):483–485.
  • Kuchino Y, Hanyu N, Nishimura S. Analysis of modified nucleosides and nucleotide sequence of tRNA. Methods Enzymol. 1987;155:379–396.
  • Ross R, Cao X, Yu N, et al. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods. 2016 Sep 1;107:73–78.
  • Kowalak JA, Pomerantz SC, Crain PF, et al. A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res. 1993 Sep 25;21(19):4577–4585.
  • Youvan DC, Hearst JE. Reverse transcriptase pauses at N2-methylguanine during in vitro transcription of Escherichia coli 16S ribosomal RNA. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3751–3754.
  • Schwartz S, Motorin Y. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol. 2017 Sep 2;14(9):1124–1137.
  • Clark WC, Evans ME, Dominissini D, et al. tRNA base methylation identification and quantification via high-throughput sequencing. RNA. 2016 Nov;22(11):1771–1784.
  • Kietrys AM, Velema WA, Kool ET. Fingerprints of modified RNA bases from deep sequencing profiles. J Am Chem Soc. 2017 Nov 29;139(47):17074–17081.
  • Motorin Y, Helm M. Methods for RNA modification mapping using deep sequencing: established and new emerging technologies. Genes-Basel. 2019 Jan;10(1). DOI:10.3390/genes10110931
  • Kimura S, Dedon PC, Waldor MK. Surveying the landscape of tRNA modifications by combining tRNA sequencing and RNA mass spectrometry. bioRxiv. 2019;723049.
  • Hummel G, Warren J, Drouard L. The multi-faceted regulation of nuclear tRNA gene transcription. IUBMB Life. 2019 Aug;71(8):1099–1108.
  • Bermudez-Santana C, Attolini CS, Kirsten T, et al. Genomic organization of eukaryotic tRNAs. BMC Genomics. 2010 Apr 28;11:270.
  • Goodarzi H, Nguyen HCB, Zhang S, et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell. 2016 Jun 2;165(6):1416–1427.
  • Kondo K, Makovec B, Waterston RH, et al. Genetic and molecular analysis of eight tRNA(Trp) amber suppressors in Caenorhabditis elegans. J Mol Biol. 1990 Sep 5;215(1):7–19.
  • Theologis A, Ecker JR, Palm CJ, et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816–820.
  • Cognat V, Pawlak G, Duchene AM, et al. PlantRNA, a database for tRNAs of photosynthetic eukaryotes. Nucleic Acids Res. 2013 Jan;41(Database issue):D273–9.
  • Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):344–353.
  • Park EJ, Kim TH. Fine-tuning of gene expression by tRNA-derived fragments during abiotic stress signal transduction. Int J Mol Sci. 2018 Feb 8;19(2):518.
  • Cognat V, Morelle G, Megel C, et al. The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res. 2017 Apr 7;45(6):3460–3472.
  • Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci. 2015 Mar;16(3):4518–4559.
  • Machnicka MA, Olchowik A, Grosjean H, et al. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 2014;11(12):1619–1629.
  • Iida K, Jin H, Zhu JK. Bioinformatics analysis suggests base modifications of tRNAs and miRNAs in Arabidopsis thaliana. BMC Genomics. 2009 Apr 9;10:155.
  • Chen HC, Viry-Moussaid M, Dietrich A, et al. Evolution of a mitochondrial tRNA PHE gene in A. thaliana: import of cytosolic tRNA PHE into mitochondria. Biochem Biophys Res Commun. 1997 Aug 18;237(2):432–437.
  • Duchêne AM, Drouard L. The chloroplast-derived trnW and trnM-e genes are not expressed in Arabidopsis mitochondria. Biochem Biophys Res Commun. 2001 Aug 3;285(5):1213–1216.
  • Novoa EM, Pavon-Eternod M, Pan T, et al. A role for tRNA modifications in genome structure and codon usage. Cell. 2012 Mar 30;149(1):202–213.
  • Fuchs RT, Sun Z, Zhuang F, et al. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One. 2015;10(5):e0126049.
  • Vandivier LE, Anderson ZD, Gregory BD. HAMR: high-throughput annotation of modified ribonucleotides. Methods Mol Biol. 2019;1870:51–67.
  • Potapov V, Fu X, Dai N, et al. Base modifications affecting RNA polymerase and reverse transcriptase fidelity. Nucleic Acids Res. 2018 Jun 20;46(11):5753–5763.
  • Banerjee R, Chen S, Dare K, et al. tRNAs: cellular barcodes for amino acids. FEBS Lett. 2010 Jan 21;584(2):387–395.
  • Hopper AK, Phizicky EM. tRNA transfers to the limelight. Genes Dev. 2003 Jan 15;17(2):162–180.
  • Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes Dev. 2010 Sep 1;24(17):1832–1860.
  • Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet. 2015 Feb;16(2):98–112.
  • Wilusz JE. Controlling translation via modulation of tRNA levels. Wiley Interdiscip Rev RNA. 2015 Jul-Aug;6(4):453–470.
  • Huang SQ, Sun B, Xiong ZP, et al. The dysregulation of tRNAs and tRNA derivatives in cancer. J Exp Clin Cancer Res. 2018 May 9;37(1):101.
  • Raina M, Ibba M. tRNAs as regulators of biological processes. Front Genet. 2014;5:171.
  • Selden RF, Steinmetz A, McIntosh L, et al. Transfer RNA genes of Zea mays chloroplast DNA. Plant Mol Biol. 1983 May;2(3):141–153.
  • Bergmann P, Seyer P, Burkard G, et al. Mapping of transfer RNA genes on tobacco chloroplast DNA. Plant Mol Biol. 1984 Jan;3(1):29–36.
  • Mubumbila M, Crouse EJ, Weil JH. Transfer RNAs and tRNA genes of Vicia faba chloroplasts. Curr Genet. 1984 Jul;8(5):379–385.
  • Jacob D, Thuring K, Galliot A, et al. Absolute quantification of noncoding RNA by microscale thermophoresis. Angew Chem Int Ed Engl. 2019 Jul 8;58(28):9565–9569.
  • Hauenschild R, Tserovski L, Schmid K, et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res. 2015 Nov 16;43(20):9950–9964.
  • Telonis AG, Loher P, Magee R, et al. tRNA fragments show intertwining with mRNAs of specific repeat content and have links to disparities. Cancer Res. 2019 Jun 15;79(12):3034–3049.
  • Stupar RM, Lilly JW, Town CD, et al. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5099–5103.
  • Huang CY, Ayliffe MA, Timmis JN. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature. 2003 Mar 6;422(6927):72–76.
  • Telonis AG, Kirino Y, Rigoutsos I. Mitochondrial tRNA-lookalikes in nuclear chromosomes: could they be functional? RNA Biol. 2015;12(4):375–380.
  • Telonis AG, Loher P, Kirino Y, et al. Nuclear and mitochondrial tRNA-lookalikes in the human genome. Front Genet. 2014;5:344.
  • Sequeira-Mendes J, Araguez I, Peiro R, et al. The functional topography of the arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell. 2014 Jun;26(6):2351–2366.
  • Jain M, Olsen HE, Paten B, et al. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 2016 Nov 25;17(1):239.
  • Pan T. Modifications and functional genomics of human transfer RNA. Cell Res. 2018 Apr;28(4):395–404.
  • Tserovski L, Marchand V, Hauenschild R, et al. High-throughput sequencing for 1-methyladenosine (m(1)A) mapping in RNA. Methods. 2016 Sep 1;107:110–121.
  • Ma X, Si F, Liu X, et al. PRMdb: a repository of predicted RNA modifications in plants. Plant Cell Physiol. 2020;61(6):1213–1222..
  • Jackman JE, Alfonzo JD. Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):35–48.
  • Hendrickson TL. Recognizing the D-loop of transfer RNAs. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13473–13475.
  • Torres AG, Pineyro D, Rodriguez-Escriba M, et al. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res. 2015 May 26;43(10):5145–5157.
  • Arimbasseri AG, Blewett NH, Iben JR, et al. RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. Plos Genet. 2015 Dec;11(12):e1005671.
  • Xing F, Hiley SL, Hughes TR, et al. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J Biol Chem. 2004 Apr 23;279(17):17850–17860.
  • Lorenz C, Lunse CE, Morl M. tRNA modifications: impact on structure and thermal adaptation. Biomolecules. 2017 Apr 4;7(2):35.
  • Geslain R, Pan T. Functional analysis of human tRNA isodecoders. J Mol Biol. 2010 Feb 26;396(3):821–831.
  • Kashdan MA, Dudock BS. The gene for a spinach chloroplast isoleucine tRNA has a methionine anticodon. J Biol Chem. 1982 Oct 10;257(19):11191–11194.
  • Alkatib S, Fleischmann TT, Scharff LB, et al. Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Res. 2012 Aug;40(14):6713–6724.
  • Su D, Chan CT, Gu C, et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat Protoc. 2014 Apr;9(4):828–841.
  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018 Jan 4;46(D1):D303–D307.
  • Pereira M, Francisco S, Varanda AS, et al. Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease. Int J Mol Sci. 2018 Nov 24;19(12):3738.
  • de Crecy-lagard V, Boccaletto P, Mangleburg CG, et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res. 2019 Mar 18;47(5):2143–2159.
  • Bjork GR, Jacobsson K, Nilsson K, et al. A primordial tRNA modification required for the evolution of life? Embo J. 2001 Jan 15;20(1–2):231–239.
  • Ebhardt HA, Tsang HH, Dai DC, et al. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res. 2009 May;37(8):2461–2470.
  • Werner S, Schmidt L, Marchand V, et al. Machine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomes. Nucleic Acids Res. 2020 Apr 17;48(7):3734–3746.
  • Henley RY, Carson S, Wanunu M. Studies of RNA sequence and structure using nanopores. Prog Mol Biol Transl Sci. 2016;139:73–99.
  • Poodari VC Direct RNA sequencing of E. coli initiator tRNA using the MinION sequencing platform: UC Santa Cruz; 2019.
  • Onanuga K, Begley TJ, Chen AA, et al. tRNA modification detection using graphene nanopores: a simulation study. Biomolecules. 2017 Sep;7(3):65.
  • Jordon-Thaden IE, Chanderbali AS, Gitzendanner MA, et al. Modified CTAB and TRIzol protocols improve RNA extraction from chemically complex Embryophyta. Appl Plant Sci. 2015 May;3(5):1400105.
  • Chen F, Tang Q, Bian K, et al. Adaptive response enzyme AlkB preferentially repairs 1-methylguanine and 3-methylthymine adducts in double-stranded DNA. Chem Res Toxicol. 2016 Apr 18;29(4):687–693.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–12.
  • Bushnell B, Rood J, Singer E. BBMerge – accurate paired shotgun read merging via overlap. Plos One. 2017 Oct 26;12(10):e0185056.
  • Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017 Sep 6;30(4):772–780.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010 Jan 1;26(1):139–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.