1,963
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

SID-2 negatively regulates development likely independent of nutritional dsRNA uptake

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 888-899 | Received 21 Jul 2020, Accepted 18 Sep 2020, Published online: 12 Oct 2020

References

  • Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81–99.
  • Shabalina SA, Koonin EV. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol. 2008;23(10):578–587.
  • Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10:94–108.
  • Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457(7228):396–404.
  • Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42(1):217–239.
  • Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14:447–459.
  • Sheu-Gruttadauria J, MacRae IJ. Structural foundations of RNA silencing by argonaute. J Mol Biol. 2017;429(17):2619–2639.
  • Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell. 2007;26(5):611–623.
  • Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol. 2008;9(1):22–32.
  • Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51.
  • Weick E-M, Miska EA. piRNAs: from biogenesis to function. Development. 2014;141(18):3458–3471.
  • Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet. 2007;8(11):884–896.
  • Nowara D, Gay A, Lacomme C, et al. HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen blumeria graminis. Plant Cell. 2010;22(9):3130–3141.
  • Koch A, Kumar N, Weber L, et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc Nat Acad Sci. 2013;110(48):19324–19329.
  • Baum JA, Bogaert T, Clinton W, et al. Control of coleopteran insect pests through RNA interference. Nat Biotechnol. 2007;25:1322.
  • Mulot M, Boissinot S, Monsion B, et al. Comparative analysis of RNAi-based methods to down-regulate expression of two genes expressed at different levels in Myzus persicae. Viruses. 2016;8(11):316.
  • Wang M, Weiberg A, Lin F-M, et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016;2(10):16151.
  • Koch A, Biedenkopf D, Furch A, et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog. 2016;12(10):e1005901.
  • Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998;395(6705):854.
  • Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001;263(1–2):103–112.
  • Kamath RS. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003;30(4):313–321.
  • Zotti M, Dos Santos EA, Cagliari D, et al. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag Sci. 2018;74:1239–1250.
  • Whangbo JS, Hunter CP. Environmental RNA interference. Trends Genet. 2008;24:297–305.
  • Winston WM, Sutherlin M, Wright AJ, et al. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Nat Acad Sci. 2007;104(25):10565–10570.
  • McEwan DL, Weisman AS, Hunter CP. Uptake of extracellular double-stranded RNA by SID-2. Mol Cell. 2012;47(5):746–754.
  • Jose AM, Kim YA, Leal-Ekman S, et al. Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc Nat Acad Sci. 2012;109(36):14520–145205.
  • Gao J, Zhao L, Luo Q, et al. An EHBP-1-SID-3-DYN-1 axis promotes membranous tubule fission during endocytic recycling. PLoS Genet. 2020;16(5):e1008763.
  • Imae R, Dejima K, Kage-Nakadai E, et al. Endomembrane-associated RSD-3 is important for RNAi induced by extracellular silencing RNA in both somatic and germ cells of Caenorhabditis elegans. Sci Rep. 2016;6(1):28198.
  • Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science. 2002;295(5564):2456–2459.
  • Feinberg EH. Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003;301(5639):1545–1547.
  • Shih JD, Fitzgerald MC, Sutherlin M, et al. 1 double-stranded RNA transporter is not selective for dsRNA length. RNA. 2009;15(3):384–390.
  • Shih JD, Hunter CP. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA. 2011;17(6):1057–1065.
  • Jose AM, Garcia GA, Hunter CP. Two classes of silencing RNAs move between Caenorhabditis elegans tissues. Nat Struct Mol Biol. 2011;18(11):1184–1188.
  • Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence. Science. 1998;282(5388):430–431.
  • Hinas A, Wright AJ, Hunter CP. SID-5 is an endosome-associated protein required for efficient systemic RNAi in C. elegans. Curr Biol. 2012;22(20):1938–1943.
  • Zhao Y, Holmgren BT, Hinas A. The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans. RNA. 2017;23(3):297–307.
  • Palominos MF, Verdugo L, Gabaldon C, et al. Transgenerational diapause as an avoidance strategy against bacterial pathogens in caenorhabditis elegans. MBio. [Internet] 2017; 8(5). http://dx.doi.10.1128/mBio.01234-17
  • Franks DM, Izumikawa T, Kitagawa H, et al. C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Dev Biol. 2006;296:409–420.
  • Ho J, Tumkaya T, Aryal S, et al. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16(7):565–566.
  • Gardner MJ, Altman DG. Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J. 1986;292(6522):746–750.
  • Zečić A, Dhondt I, Braeckman BP. The nutritional requirements of Caenorhabditis elegans. Genes Nutr. 2019;14:15.
  • Akay A, Jordan D, Navarro IC, et al. Identification of functional long non-coding RNAs in C. elegans. BMC Biol. 2019;17(1):14.
  • Boeck ME, Huynh C, Gevirtzman L, et al. The time-resolved transcriptome of C. elegans. Genome Res. 2016;26(10):1441–1450.
  • Lands WE. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J Biol Chem. 1958;231:883–888.
  • Lands WE. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960;235:2233–2237.
  • Lands WE, Merkl I. Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme A with alpha’-acylglycerophosphorylcholine, and positional specificities in lecithin synthesis. J Biol Chem. 1963;238:898–904.
  • Merkl I, Lands WE. Metabolism of glycerolipids. IV. Synthesis of phosphatidylethanolamine. J Biol Chem. 1963;238:905–906.
  • Goetzl EJ, An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. Faseb J. 1998;12(15):1589–1598.
  • Kume N, Gimbrone MA Jr. Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994;93:907–911.
  • Gao AW, Chatzispyrou IA, Kamble R, et al. A sensitive mass spectrometry platform identifies metabolic changes of life history traits in C. elegans. Sci Rep. 2017;7(1):2408.
  • Appleford PJ, Griffiths M, Yao SYM, et al. Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeENT2) required for development of Caenorhabditis elegans. Mol Membr Biol. 2004;21(4):247–259.
  • Xiao G, Wang J, Tangen T, et al. A novel proton-dependent nucleoside transporter, CeCNT3, from Caenorhabditis elegans. Mol Pharmacol. 2001;59(2):339–348.
  • Mörck C, Pilon M. C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev Biol. 2006;6(1):39.
  • Shtonda BB, Avery L. Dietary choice behavior in Caenorhabditis elegans. J Exp Biol. 2006;209:89–102.
  • Uppaluri S, Brangwynne CP. A size threshold governs Caenorhabditis elegans developmental progression. Proc Biol Sci. 2015;282:20151283.
  • Macedo F, Martins GL, Luévano-Martínez LA, et al. Lipase-like 5 enzyme controls mitochondrial activity in response to starvation in Caenorhabditis elegans. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158539.
  • Szewczyk NJ, Kozak E, Conley CA. Chemically defined medium and Caenorhabditis elegans. BMC Biotechnol. 2003;3(1):19.
  • MacNeil LT, Watson E, Arda HE, et al. Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell. 2013;153:240–252.
  • Byerly L, Cassada RC, Russell RL. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol. 1976;51(1):23–33.
  • Woodruff GC, Willis JH, Phillips PC. Dramatic evolution of body length due to postembryonic changes in cell size in a newly discovered close relative of Caenorhabditis elegans. Evol Lett. 2018;2:427–441.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94.
  • Flemming AJ, Shen ZZ, Cunha A, et al. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc Natl Acad Sci U S A. 2000;97(10):5285–5290.
  • Johnstone IL. Cuticle collagen genes. Expression in Caenorhabditis elegans. Trends Genet. 2000;16(1):21–27.
  • Hibshman JD, Hung A, Ryan Baugh L. Maternal diet and insulin-like signaling control intergenerational plasticity of progeny size and starvation resistance. PLoS Genet. 2016;12(10):e1006396.
  • So S, Miyahara K, Ohshima Y. Control of body size in C. elegans dependent on food and insulin/IGF-1 signal: body size control in C. elegans. Genes Cells. 2011;16:639–651.
  • McCulloch D. Body size, insulin/IGF signaling and aging in the nematode Caenorhabditis elegans. Exp Gerontol. 2003;38(1–2):129–136.
  • Nuez I, Félix M-A. Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes. PLoS One. 2012;7(1):e29811.
  • Khajuria C, Ivashuta S, Wiggins E, et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One. 2018;13(5):e0197059.
  • Liu H, Wang X, Wang H-D, et al. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat Commun. 2012;3(1):1073.
  • Akay A, Sarkies P, Miska EA. E. coli OxyS non-coding RNA does not trigger RNAi in C. elegans. Sci Rep. 2015;5(1):9597.
  • Samuel BS, Rowedder H, Braendle C, et al. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc Natl Acad Sci U S A. 2016;113(27):E3941–9.
  • Félix M-A, Braendle C. The natural history of Caenorhabditis elegans. Curr Biol. 2010;20(22):R965–9.
  • Frézal L, Félix M-A. C. elegans outside the Petri dish. Elife. [ [Internet] 2015; 4. Available from]: https://www.ncbi.nlm.nih.gov/pubmed/25822066
  • Melo JA, Ruvkun G. Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell. 2012;149(2):452–466.
  • Kaletsky R, Moore RS, Vrla GD, et al. C. elegans “reads” bacterial non-coding RNAs to learn pathogenic avoidance [Internet]. bioRxiv. 2020. cited 2020 Mar 10. 2020.01.26.920322. https://www.biorxiv.org/content/10.1101/2020.01.26.920322v1
  • Paix A, Folkmann A, Seydoux G. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods. 2017;121:86–93.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
  • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2013;30(7):923–930.
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple controlling the false discovery rate. Source JR Stat Soc Ser BJR Stat Soc Ser BMethodological). JR Stat Soc B. 1995;57:289–300.
  • Angeles-Albores D, Lee RYN, Chan J, et al. Two new functions in the wormbase enrichment suite, microPublication Biol, 2018
  • Virtue S, Petkevicius K, Moreno-Navarrete JM, et al. Peroxisome proliferator-activated receptor γ2 controls the rate of adipose tissue lipid storage and determines metabolic flexibility. Cell Rep. 2018;24(8):2005–12.e7.