1,794
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Synthetase of the methyl donor S-adenosylmethionine from nitrogen-fixing α-rhizobia can bind functionally diverse RNA species

ORCID Icon, , ORCID Icon, & ORCID Icon

References

  • Wagner EGH, Romby P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. In: Theodore Friedmann JCD, Stephen FG, editors. Adv Genet. Vol. 90. Academic Press, Amsterdam; 2015. p. 133–208.
  • Waters LS, Storz G. Regulatory RNAs in bacteria. Cell. 2009 Feb 20;136(4):615–628.
  • Storz G. An expanding universe of noncoding RNAs. Science. 2002 May;296(5571):1260–1263.
  • Sharma CM, Darfeuille F, Plantinga TH, et al. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 2007 Nov;21(21):2804–2817.
  • Desnoyers G, Bouchard MP, Massé E. New insights into small RNA-dependent translational regulation in prokaryotes. Trends Genet. 2013 Feb;29(2):92–98.
  • Sun X, Zhulin I, Wartell RM. Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res. 2002 Sep;30(17):3662–3671.
  • Vogel J, Wagner EG. Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol. 2007 Jun;10(3):262–270.
  • Valentin-Hansen P, Eriksen M, Udesen C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol. 2004 Mar;51(6):1525–1533.
  • Dos Santos RF, Arraiano CM, Andrade JM. New molecular interactions broaden the functions of the RNA chaperone Hfq. Curr Genet. 2019;65(6):1313–1319.
  • Romby P, Charpentier E. An overview of RNAs with regulatory functions in gram-positive bacteria. Cell Mol Life Sci. 2010 Jan;67(2):217–237.
  • Smirnov A, Forstner KU, Holmqvist E, et al. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11591–11596.
  • Smirnov A, Wang C, Drewry LL, et al. Molecular mechanism of mRNA repression in trans by a ProQ‐dependent small RNA. Embo J. 2017;36(8):1029–1045.
  • Westermann AJ, Venturini E, Sellin ME, et al. The major RNA-binding protein proq impacts virulence gene expression in salmonella enterica serovar typhimurium. mBio. 2019;10(1).
  • Melamed S, Adams PP, Zhang A, et al. RNA-RNA Interactomes of ProQ and Hfq reveal overlapping and competing roles. Mol Cell. 2020;77(2):411–425.e7.
  • Olejniczak M, Storz G. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol. 2017;104(6):905–915.
  • Windbichler N, Schroeder R. Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nat Protoc. 2006;1(2):637–640.
  • Rieder R, Reinhardt R, Sharma C, et al. Experimental tools to identify RNA-protein interactions in Helicobacter pylori. RNA Biol. 2012;9(4):520–531.
  • Said N, Rieder R, Hurwitz R, et al. In vivo expression and purification of aptamer-tagged small RNA regulators. Nucleic Acids Res. 2009 November 1;37(20):e133.
  • Windbichler N, von Pelchrzim F, Mayer O, et al. Isolation of small RNA-binding proteins from E. coli: evidence for frequent interaction of RNAs with RNA polymerase. RNA Biol. 2008 Jan-Mar;5(1):30–40.
  • Sukhodolets MV, Garges S. Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq. Biochemistry. 2003 Jul 8;42(26):8022–8034.
  • Sobrero P, Valverde C. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol. 2012 Nov;38(4):276–299.
  • De Lay N, Schu DJ, Gottesman S. Bacterial small RNA-based negative regulation: hfq and its accomplices. J Biol Chem. 2013;288(12):7996–8003.
  • Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol. 2007 Apr;10(2):156–163.
  • Wassarman KM. 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol. 2007 Apr;10(2):164–168.
  • Jørgensen MG, Thomason MK, Havelund J, et al. Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev. 2013 May 15;27(10):1132–1145.
  • Müller P, Gimpel M, Wildenhain T, et al. A new role for CsrA: promotion of complex formation between an sRNA and its mRNA target in Bacillus subtilis. RNA Biol. 2019;16(7):972–987.
  • Holmqvist E, Vogel J. RNA-binding proteins in bacteria. Nature Rev Microbiol. 2018;6(10):601–615.
  • Jones KM, Kobayashi H, Davies BW, et al. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol. 2007 Aug;5(8):619–633.
  • Torres-Quesada O, Millan V, Nisa-Martinez R, et al. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont Sinorhizobium meliloti. PLoS One. 2013;8(7):e68147.
  • Robledo M, Frage B, Wright PR, et al. A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet. 2015;11(4):e1005153.
  • Baumgardt K, Šmídová K, Rahn H, et al. The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti. RNA Biol. 2015;13(5):486–499.
  • Lagares A Jr., Ceizel Borella G, Linne U, et al. Regulation of polyhydroxybutyrate accumulation in Sinorhizobium meliloti by the trans-encoded small RNA MmgR. J Bacteriol. 2017 Feb 06;199(8):e00776–16.
  • Robledo M, Peregrina A, Millán V, et al. A conserved α-proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots. Environ Microbiol. 2017;19(7):2661–2680.
  • Robledo M, García-Tomsig NI, Jiménez-Zurdo JI. Riboregulation in Nitrogen-Fixing Endosymbiotic Bacteria. Microorganisms. 2020;8(3):384.
  • Torres-Quesada O, Reinkensmeier J, Schluter JP, et al. Genome-wide profiling of Hfq-binding RNAs uncovers extensive post-transcriptional rewiring of major stress response and symbiotic regulons in Sinorhizobium meliloti. RNA Biol. 2014;11(5):563–579.
  • Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA websuite [Research Support, Non-U.S. Gov’t]. Nucleic Acids Res. 2008 Jul 1;36:70–74.
  • Schlüter JP, Reinkensmeier J, Barnett MJ, et al. Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. BMC Genomics. 2013;14:156.
  • Schlüter JP, Reinkensmeier J, Daschkey S, et al. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics. 2010;11:245.
  • Robledo M, Matia-Gonzalez AM, Garcia-Tomsig NI, et al. Identification of small RNA-protein partners in plant symbiotic bacteria. Methods Mol Biol. 2018;1737:351–370.
  • Arraiano CM, Andrade JM, Domingues S, et al. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev. 2010 Sep;34(5):883–923.
  • Milojevic T, Sonnleitner E, Romeo A, et al. False positive RNA binding activities after Ni-affinity purification from Escherichia coli. RNA Biol. 2013;10(6):1066–1069.
  • Nisa-Martinez R, Jimenez-Zurdo JI, Martinez-Abarca F, et al. Dispersion of the RmInt1 group II intron in the Sinorhizobium meliloti genome upon acquisition by conjugative transfer. Nucleic Acids Res. 2007 JAN;35(1):214–222.
  • Jiménez-Zurdo JI, Valverde C, Becker A. Insights into the noncoding RNome of nitrogen-fixing endosymbiotic α-proteobacteria. Mol Plant-Microbe Interact. 2013;26(2):160–167.
  • Del Val C, Romero-Zaliz R, Torres-Quesada O, et al. A survey of sRNA families in alpha-proteobacteria [Research Support, Non-U.S. Gov’t]. RNA Biol. 2012 Feb;9(2):119–129.
  • Reinkensmeier J, Schlüter J-P, Giegerich R, et al. Conservation and occurrence of trans-encoded sRNAs in the rhizobiales. Genes (Basel). 2011;2(4):925–956.
  • Saramago M, Peregrina A, Robledo M, et al. Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation. Nucleic Acids Res. 2017 December 6;45(3):1371–1391.
  • Batey RT, Kieft JS. Improved native affinity purification of RNA. RNA. 2007 Aug;13(8):1384–1389.
  • Deckert J, Hartmuth K, Boehringer D, et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol. 2006 Jul;26(14):5528–5543.
  • Beljantseva J, Kudrin P, Andresen L, et al. Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA. Proc Natl Acad Sci U S A. 2017 Apr 04;114(14):3726–3731.
  • Hauryliuk V, Atkinson GC. Small Alarmone Synthetases as novel bacterial RNA-binding proteins. RNA Biol. 2017 Aug;18. DOI:10.1080/15476286.2017.1367889
  • Baltz AG, Munschauer M, Schwanhausser B, et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 2012 Jun 8;46(5):674–690.
  • Castello A, Fischer B, Eichelbaum K, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012 Jun 8;149(6):1393–1406.
  • Matia-Gonzalez AM, Laing EE, Gerber AP. Conserved mRNA-binding proteomes in eukaryotic organisms. Nat Struct Mol Biol. 2015 Dec;22(12):1027–1033.
  • Nagy E, Rigby WF. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J Biol Chem. 1995 Feb 10;270(6):2755–2763.
  • Nagy E, Henics T, Eckert M, et al. Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun. 2000 Aug 28;275(2):253–260.
  • Walden WE, Selezneva AI, Dupuy J, et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science. 2006 Dec 22;314(5807):1903–1908.
  • Beaufay F, Coppine J, Mayard A, et al. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus. Embo J. 2015 Jul;34(13):1786–1800.
  • Krall AS, Christofk HR. Cell cycle: division enzyme regulates metabolism. Nature. 2017 Jun;546(7658):357–358.
  • Holmqvist E, Li L, Bischler T, et al. Global Maps of ProQ Binding in vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3ʹ Ends. Mol Cell. 2018;70(5):971–982.e6.
  • Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974 Sep;84(1):188–198.
  • Robertsen BK, Aman P, Darvill AG, et al. Host-symbiont interactions: V. the structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant Physiol. 1981 Mar;67(3):389–400.
  • Casse F, Boucher C, Julliot JS, et al. Identification and Characterization of Large Plasmids in Rhizobium meliloti using Agarose Gel Electrophoresis. J Gen Microbiol. 1979 August 1;113(2):229–242.
  • Meade HM, Long SR, Ruvkun GB, et al. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122.
  • Bahlawane C, McIntosh M, Krol E, et al. Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility [Research Support, Non-U.S. Gov’t]. Mol Plant Microbe Interact. 2008 Nov;21(11):1498–1509.
  • Khan SR, Gaines J, Roop RM, et al. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol. 2008;74(16):5053–5062.
  • Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria [10.1038/nbt1183-784]. Nat Biotech. 1983;1(9):784–791.
  • Torres-Quesada O, Oruezabal RI, Peregrina A, et al. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC Microbiol. 2010;10:71.
  • Schafer A, Tauch A, Jager W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum [Research Support, Non-U.S. Gov’t]. Gene. 1994 Jul 22;145(1):69–73.
  • Del Val C, Rivas E, Torres-Quesada O, et al. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol. 2007 Dec;66(5):1080–1091.
  • LeCuyer KA, Behlen LS, Uhlenbeck OC. Mutants of the bacteriophage MS2 coat protein that alter its cooperative binding to RNA. Biochemistry. 1995;34(33):10600–10606.
  • Vizcaíno JA, Côté RG, Csordas A, et al. The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2012;41(D1):D1063–D1069.
  • Fruzangohar M, Ebrahimie E, Ogunniyi AD, et al. Comparative GO: a web application for comparative gene ontology and gene ontology-based gene selection in bacteria. PLoS One. 2013;8(3):e58759.