10,149
Views
32
CrossRef citations to date
0
Altmetric
Technical Paper

3D RNA-seq: a powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists

ORCID Icon, , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1574-1587 | Received 08 Sep 2020, Accepted 27 Nov 2020, Published online: 19 Dec 2020

References

  • Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419.
  • Bray NL, Pimentel H, Melsted P, et al. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–527.
  • Trapnell C, Pachter l, Salzburg SL.TopHat: discovering splice junctions with RNA-seq Bioinformatics. 2009;25(9):1105–1111.
  • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–515.
  • Sebestyén E, Zawisza M, Eyras E. Detection of recurrent alternative splicing switches in tumor samples reveals novel signatures of cancer. Nucleic Acids Res. 2015;43(3):1345–1356.
  • Guo W, Calixto CPG, Brown JWS, et al. TSIS: an R package to infer alternative splicing isoform switches for time-series data. Bioinformatics. 2017;33(20):3308–3310.
  • Law CW, Chen Y, Shi W, et al. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29.
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
  • Frahm KA, Waldman JK, Luthra S, et al. A comparison of the sexually dimorphic dexamethasone transcriptome in mouse cerebral cortical and hypothalamic embryonic neural stem cells. Mol Cell Endocrinol. 2018;471:42–50.
  • Pimentel H, Bray NL, Puente S, et al. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14(7):687–690.
  • Yi L, Pimentel H, Bray NL, et al. Gene-level differential analysis at transcript-level resolution. Genome Biol. 2018;19(1):53.
  • Calixto CPG, Guo W, James AB, et al. Rapid and dynamic alternative splicing impacts the arabidopsis cold response transcriptome. Plant Cell. 2018;30(7):1424–1444.
  • Calixto CPG, Tzioutziou NA, James AB, et al. Cold-dependent expression and alternative splicing of arabidopsis long non-coding RNAs. Front Plant Sci. 2019;10:235.
  • Zhang R, Calixto CPG, Marquez Y, et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res. 2017;45(9):5061–5073.
  • Risso D, Ngai J, Speed TP, et al. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32(9):896–902.
  • Fresno C, Fernández EA. RDAVIDWebService: A versatile R interface to DAVID. Bioinformatics. 2013;29(21):2810–2811.
  • Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version 2.38.1. 2019. Available at: https://bioconductor.org/packages/release/bioc/html/topGO.html
  • Carlson M. org.Mm.eg.db: genome wide annotation for Mouse. R package version 3.4.0. Bioconductor;2019. DOI:10.18129/B9.bioc.org.Mm.eg.db
  • KEGG PATHWAY Database. n.d. [cited 2020 Jan 6]. Available from: https://www.genome.jp/kegg/pathway.html
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300.
  • Brown JWS, Calixto CPG, Zhang R. High-quality reference transcript datasets hold the key to transcript-specific RNA-sequencing analysis in plants. New Phytologist. 2017;213(2):525–530.
  • Zhang R, Calixto CPG, Tzioutziou NA, et al. AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana. New Phytol. 2015;208(1):96–101.
  • Alamancos GP, Pagès A, Trincado JL, et al. Leveraging transcript quantification for fast computation of alternative splicing profiles. Rna. 2015;21(9):1521–1531.
  • Soneson C, Love MI, Patro R, et al. A junction coverage compatibility score to quantify the reliability of transcript abundance estimates and annotation catalogs. Life Sci Alliance. 2019;2(1):e201800175.
  • Galaxy | Europe. n.d. [cited 2020 Jan 6]. Available from: https://usegalaxy.eu/
  • Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2016;4:1521.
  • Benaroya H, Mi Han S. Probability models in engineering and science. Mech Eng. 2005;48(4):740. .
  • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288–4297.
  • Bullard JH, Purdom E, Hansen KD, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11(1):94.
  • Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):1165–1188.
  • Hastie TJ, Chambers JM. Generalized additive models. Chapter 7 of Statistical Models in Seds. In: Monographs on statistics and applied probability. New York: Wadsworth & Brooks/Cole; 1992.
  • Bahieldin A, Atef A, Sabir JSM, et al. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. Comptes Rendus - Biologies. 2015;338(5):285–297.
  • Ma L, Coulter JA, Liu L, et al. Transcriptome analysis reveals key cold-stress-responsive genes in winter rapeseed (Brassica rapa L. Int J Mol Sci. 2019;20(5):1071.
  • Blair EJ, Bonnot T, Hummel M, et al. Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci Rep. 2019;9(1). DOI:10.1038/s41598-019-41234-w
  • Kim JA, Shim D, Kumari S, et al. Transcriptome analysis of diurnal gene expression in Chinese cabbage. Genes (Basel). 2019;10(2):130.
  • Oh S, Song S, Dasgupta N, et al. The analytical landscape of static and temporal dynamics in transcriptome data. Front Genet. 2014;5(FEB). DOI:10.3389/fgene.2014.00035
  • Jardim-Perassi BV, Alexandre PA, Sonehara NM, et al. RNA-Seq transcriptome analysis shows anti-tumor actions of melatonin in a breast cancer xenograft model. Sci Rep. 2019;9(1). DOI:10.1038/s41598-018-37413-w
  • Kang W, Jia Z, Tang D, et al. Time-course transcriptome analysis for drug repositioning in fusobacterium nucleatum-infected human gingival fibroblasts. Front Cell Dev Biol. 2019;7. DOI:10.3389/fcell.2019.00204.
  • Baumer B, Udwin D. R Markdown. Wiley Interdiscip Rev Comput Stat. 2015;7(3):167–177.
  • Rapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013;14(9):R95.
  • Tang M, Sun J, Shimizu K, et al. Evaluation of methods for differential expression analysis on multi-group RNA-seq count data. BMC Bioinformatics. 2015;16(1):360.
  • Liu R, Holik AZ, Su S, et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015;43(15):e97-e97.