1,174
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach

ORCID Icon, , ORCID Icon, , &
Pages 1702-1715 | Received 03 Nov 2020, Accepted 17 Dec 2020, Published online: 07 Jan 2021

References

  • Kim N. Small RNAs: classification, biogenesis, and function. Mol Cells. 2005;19(1):1–15.
  • Kawamura Y, Saito K, Kin T, et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature. 2008;453(7196):793–797.
  • Papenfort K, Vogel J. Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol. 2009;160(4):278–287.
  • Carthew R, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–655.
  • Kim V, Han J, Siomi M. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009a;10(2):126–139.
  • Carninci P. Molecular biology: the long and short of RNAs. Nature. 2009;457(7232):974–975.
  • Kim S, Song M, Min H, et al. miRNA biogenesis-associated RNase III nucleases Drosha and Dicer are upregulated in colorectal adenocarcinoma. Oncol Lett. 2017;14(4):4379–4383.
  • Lee R, Feinbaum R, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854.
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–862.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–62.
  • Ibanez-Ventoso C, Vora M, Driscoll M. Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS One. 2008;3(7):e2818.
  • Sperling E, Vinther J, Moy V, et al. MicroRNAs resolve an apparent conflict between annelid systematics and their fossil record. Proc R Soc B. 2009;276(1677):4315–4322.
  • Wheeler B, Heimberg A, Moy V, et al. The deep evolution of metazoan microRNAs. Evol Dev. 2009;11(1):50–68.
  • Bartel D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79(4):581–588.
  • Di L, Calin G, Croce C. MicroRNAs: fundamental facts and involvement in human diseases. Birth Defects Res C. 2006;78(2):180–189.
  • Bushati N, Cohen S. MicroRNA functions. Annu Rev Cell Dev Biol. 2007;23(1):175–205.
  • Vasudevan S, Tong Y, Steitz J. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–1934.
  • Mortensen R, Serra M, Steitz J, et al. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci USA. 2011;108(20):8281–8286.
  • Place R, Li L, Pookot D, et al. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 2008;105(5):1608–1613.
  • Weinmann L, Hock J, Ivacevic T, et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 2009;136(3):496–507.
  • Younger S, Corey D. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 2011;39(13):5682–5691.
  • Guo X, He Y, Zhang L, et al. Immune and stress responses in oysters with insights on adaptation. Fish Shellfish Immunol. 2015;46(1):107–119.
  • Green T, Raftos D, Speck P, et al. Antiviral immunity in marine molluscs. J Gen Virol. 2015;96(9):2471–2482.
  • Xu F, Wang X, Feng Y, et al. Identification of conserved and novel microRNAs in the Pacific oyster Crassostrea gigas by deep sequencing. PLoS One. 2014;9(8):e104371.
  • Huang S, Ichikawa Y, Yoshitake K, et al. Identification and characterization of micrornas and their predicted functions in biomineralization in the pearl oyster (Pinctada fucata). Biology (Basel). 2019;8(2):47.
  • Neilsen C, Goodall G, Bracken C. IsomiRs-the overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28(11):544–549.
  • Aboobaker A, Tomancak P, Patel N, et al. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci USA. 2005;102(50):18017–18022.
  • Marco A, Ninova M, Ronshaugen M, et al. Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Res. 2013;41(16):7745–7752.
  • Rosani U, Pallavicini A, Venier P. The miRNA biogenesis in marine bivalves. PeerJ. 2016;4:e1763.
  • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–419.
  • Denli A, Tops B, Plasterk R, et al. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432(7014):231–235.
  • Han J, Lee Y, Yeom K, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–3027.
  • Ketting R, Fischer S, Bernstein E, et al. Dicer functions in RNA interferen and in synthesis of small RNA involved in developmental timing in C. elegans. Ele Genes Dev. 2001;15(20):2654–2659.
  • Hutvagner G, McLachlan J, Pasquinelli A, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–838.
  • Kawamata T, Seitz H, Tomari Y. Structural determinants of miRNAs for RISC loading and slicer independent unwinding. Nat Struct Mol Biol. 2009;16(9):953–960.
  • Ro S, Park C, Young D, et al. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res. 2007;35(17):5944–5953.
  • Hu HY, Yan Z, Xu Y, et al. Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics. 2009;10(1):413.
  • Yones C, Stegmayer G, Milone DH. Genome-wide pre-miRNA discovery from few labeled examples. Bioinformatics. 2018;34(4):541–549.
  • Prochnik SE, Rokhsar DS, Aboobaker AA. Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol. 2007;217(1):73–77.
  • Marco A, Hooks K, Griffiths-Jones S. Evolution and function of the extended miR-2 microRNA family. RNA Biol. 2012;9(3):242–248.
  • Iovino N, Pane A, Gaul U. miR-184 has multiple roles in Drosophila female germline development. Dev Cell. 2009;17(1):123–133.
  • Nomura T, Kimura M, Horii T, et al. MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet. 2008;17(8):1192–1199.
  • Li P, Peng J, Hu J, et al. Localized expression pattern of miR-184 in Drosophila. Mol Biol Rep. 2011;38(1):355–358.
  • Jiao Y, Zheng Z, Du X, et al. Identification and characterization of microRNAs in pearl oyster Pinctada martensii by Solexa deep sequencing. Mar Biotechnol. 2013;16(1):54–62.
  • Bao Y, Zhang L, Dong Y, et al. Identification and comparative analysis of the Tegillarca granosa haemocytes microRNA transcriptome in response to Cd using a deep sequencing approach. PLoS One. 2014;9(4):e93619.
  • Nolo R, Morrison CM, Tao C, et al. The bantam microRNA is a target of the hippo tumor-suppressor pathway. Curr Biol. 2006;16(19):1895–1904.
  • Reinhart B, Slack F, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–906.
  • Schulte L, Eulalio A, Mollenkopf H, et al. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7family. Embo J. 2011;30(10):1977–1989.
  • Muller H, Marzi M, Nicassio F. IsomiRage: from functional classification to differential expression of miRNA isoforms. Front Bioeng Biotech. 2014;2:38.
  • Starega-Roslan J, Witkos T, Galka-Marciniak P, et al. Sequence features of Drosha and Dicer cleavage sites affect the complexity of isomiRs. Int J Mol Sci. 2015;16(4):8110–8127.
  • Newman M, Mani V, Hammond S. Deep sequencing of microRNA precursors reveals extensive 3ʹ end modification. RNA. 2011;17(10):1795–1803.
  • Mockly S, Seitz H. Inconsistencies and limitations of current MicroRNA target identification methods. Methods Mol Biol. 2019;1970:291–314.
  • Fridrich A, Hazan Y, Moran Y. Too many false targets for microRNAs: challenges and pitfalls in prediction of miRNA targets and their Gene Ontology in model and non-model organisms. Bioessays. 2019;41(4):e1800169.
  • Pinzón N, Li B, Martinez L, et al. microRNA target prediction programs predict many false positives. Genome Res. 2017;27(2):234–245.
  • Li Y, Sun X, Hu X, et al. Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat Commun. 2017;8(1):1721.
  • Sun J, Zhang Y, Xu T, et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat Ecol Evol. 2017;1(5):121.
  • Liu C, Zhang Y, Ren Y, et al. The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation. GigaScience. 2018;7(9):giy101.
  • Kenny N, Namigai E, Marletaz F, et al. Draft genome assemblies and predicted microRNA complements of the intertidal lophotrochozoans Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomatoceros) lamarcki (Annelida, Serpulida). Mar Genom. 2015;24:139–146.
  • Zheng Z, Jiao Y, Du X, et al. Computational prediction of candidate miRNAs and their potential functions in biomineralization in pearl oyster Pinctada martensii. Saudi J Biol Sci. 2016;23(3):372–378.
  • Tian R, Zheng Z, Huang R, et al. miR-29a participated in nacre formation and immune response by targeting Y2R in Pinctada martensii. Int J Mol Sci. 2015;16(12):29436–29445.
  • Li Z, Hassan M, Jafferji M, et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 2009;284(23):15676–15684.
  • Mizuno Y, Yagi K, Tokuzawa Y, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun. 2008;368(2):267–272.
  • Zheng Z, Du X, Xiong X, et al. PmRunt regulated by Pm-miR-183 participates in nacre formation possibly through promoting the expression of collagen VI-like and Nacrein in pearl oyster Pinctada martensii. PLoS One. 2017;12(6):e0178561.
  • Itoh T, Nozawa Y, Akao Y. MicroRNA-141 and −200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem. 2009;284(29):19272–19279.
  • Mizuno Y, Tokuzawa Y, Ninomiya Y, et al. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 2009;583(13):2263–2268.
  • Kim Y, Bae S, Yu S, et al. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res. 2009b;24(5):816–825.
  • Jiao Y, Zheng Z, Tian R, et al. MicroRNA, Pm-miR-2305, participates in nacre formation by targeting pearlin in pearl oyster Pinctada martensii. Int J Mol Sci. 2015;16(9):21442–21453.
  • Stepicheva NA, Song J. MicroRNA-31 modulates skeletal patterning in the sea urchin embryos. Development. 2015;142(21):3769–3780.
  • Li S, Chen W, Zhan A, et al. Identification and characterization of microRNAs involved in scale biomineralization in the naked carp Gymnocypris przewalskii. Comp Biochem Physiol Part D. 2018;28:196–203.
  • Xia Z, Chen C, Chen P, et al. MicroRNAs and their roles in osteoclast differentiation. Front Med. 2011;5(4):414–419.
  • Chen X, Zhang M, Zhang J, et al. miR-4504 is involved in nacre color formation in Hyriopsis cumingii. Biochem Biophys Res Commun. 2019a;517(2):210–215.
  • Martin-Gomez L, Villalba A, Kerkhoven RH, et al. Role of microRNAs in the immunity process of the flat oyster Ostrea edulis against bonamiosis. Infect Genet Evol. 2014;27:40–50.
  • Zhou Z, Wang L, Song L, et al. The identification and characteristics of immune-related microRNAs in haemocytes of oyster Crassostrea gigas. PLoS One. 2014;9(2):e88397.
  • Burgos-Aceves M, Cohen A, Smith Y, et al. A potential microRNA regulation of immune-related genes in invertebrate haemocytes. Sci Total Environ. 2018;621:302–307.
  • Chen H, Zhou Z, Wang H, et al. An invertebrate-specific and immune-responsive microRNA augments oyster haemocyte phagocytosis by targeting CgIκB2. Sci Rep. 2016a;6(1):29591.
  • Chen H, Zhou Z, Wang L, et al. An invertebrate-specific miRNA targeted the ancient cholinergic neuroendocrine system of oyster. Open Biol. 2016b;6(8):160059.
  • Chen H, Jiang S, Wang L, et al. Cgi-miR-92d indirectly regulates TNF expression by targeting CDS region of lipopolysaccharide-induced TNF-α factor 3 (CgLITAF3) in oyster Crassostrea gigas. Fish Shellfish Immunol. 2016c;55:577–584.
  • Rajasethupathy P, Fiumara F, Sheridan R, et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63(6):803–817.
  • Li Z, Wu F, Brant S, et al. IL-23 receptor regulation by Let-7f in human CD4+Memory T cells. J Immunol. 2011;186(11):6182–6190.
  • Zhao X, Yu H, Kong L, et al. High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Sci Rep. 2016;6(1):22687.
  • Patel M, Cai Q, Ding D, et al. The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. PloS One. 2013;8(3):e58471.
  • Chen H, Xin L, Song X, et al. A norepinephrine-responsive miRNA directly promotes CgHSP90AA1 expression in oyster haemocytes during desiccation. Fish Shellfish Immunol. 2017;64:297–307.
  • Hadj-Moussa H, Logan S, Seibel B, et al. Potential role for microRNA in regulating hypoxia-induced metabolic suppression in jumbo squids. BBA Gene Regul Mechs. 2018;1861(6):586–593.
  • Zhou Y, He Y, Wang C, et al. Characterization of miRNAs from hydrothermal vent shrimp Rimicaris exoculate. Mar Genom. 2015;24:371–378.
  • Wang Q, Yang H, Li X, et al. Understanding regulation of microRNAs on intestine regeneration in the sea cucumber Apostichopus japonicus using high- throughput sequencing. Comp Biochem Physiol D. 2017;22:1–9.
  • Biggar K, Kornfeld S, Maistrovski Y, et al. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia. Genomics, Proteomics & Bioinformatics. 2012;10(5):302–309.
  • Hoyeck M, Hadj-Moussa H, Storey K. Estivation-responsive microRNAs in a hypometabolic terrestrial snail. PeerJ. 2019;7:e6515.
  • Walker S, Spencer GE, Necakpv A, et al. Identification and characterization of microRNAs during retinoic acid-induced regeneration of a molluscan central nervous system. Int J Mol Sci. 2018;19(9):2741.
  • Wang X, Zhang J, Li F, et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics. 2005;21(18):3610–3614.
  • Friedlander M, Mackowiak S, Li N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52.
  • Chen C, Ridzon D, Broomer A, et al. Real-time quantification of micro-RNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.
  • Pfaffl M. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2011;29(9):e45.
  • Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA. 2014;10(10):1507–1517.
  • Enright A, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1.
  • Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(suppl_2):W316–22.
  • Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acid Res. 2019;47(W1):W234–41.
  • Slater G, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6(1):31.
  • Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017;46(D1):493–496.
  • Larkin M, Blackshields G, Brown N, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948.
  • Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–552.
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729.
  • Chen G, Zhang C, Jiang F, et al. Bioinformatics analysis of hemocyte miRNAs of scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Fish Shellfish Immunol. 2014;37(1):75–86.
  • Chen H, Wang L, Zhou Z, et al. The comprehensive immunomodulation of NeurimmiRs in haemocytes of oyster Crassostrea gigas after acetylcholine and norepinephrine stimulation. BMC Genomics. 2015;16(1):942.
  • Wei P, He P, Zhang X, et al. Identification and characterization of microRNAs in the gonads of Crassostrea hongkongensis using high-throughput sequencing. Comp Biochem Physi D. 2019;31:100606.
  • Chen X, Bai ZY, Li JL. The mantle exosome and microRNAs of Hyriopsis cumingii involved in nacre color formation. Mar Biotechnol. 2019b;21(5):634–642.
  • Yu D, Wu H, Peng X, et al. Profiling of microRNAs and mRNAs in marine mussel Mytilus galloprovincialis. Comp Biochem Phys C. 2020;230:108697.
  • Jiao Y, Zheng Z, Du X, et al. Identification and Characterization of MicroRNAs in Pearl Oyster Pinctada martensii by Solexa Deep Sequencing. Mar Biotechnol. 2014;16(1):54–62.
  • Picone B, Rhode C, Roodt-wilding R. Identification and characterization of miRNAs transcriptome in the South African abalone, Haliotis midae. Mar Genom. 2017;31:9–12.
  • Zhu X, Chen Y, Zhang Z, et al. A species-specific miRNA participates in biomineralization by targeting CDs regions of Prisilkin-39 and ACCBP in Pinctada fucata. Sci Rep. 2020;10(1):8971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.