1,255
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Identification and initial characterization of POLIII-driven transcripts by msRNA-sequencing

, ORCID Icon, &
Pages 1807-1817 | Received 21 Sep 2020, Accepted 29 Dec 2020, Published online: 18 Jan 2021

References

  • Podnar J, Deiderick H, Huerta G, et al. Next-generation sequencing RNA-seq library construction. Curr Protoc Mol Biol. 2014;106(4):21 1–19.
  • McGinn J, Small CB. RNA library construction for high-throughput sequencing. Methods Mol Biol. 2014;1093:195–208.
  • Orioli A, Pascali C, Pagano A, et al. RNA polymerase III transcription control elements: themes and variations. Gene. 2012;493:185–194.
  • Kessler AC, Silveira d’Almeida G, Alfonzo JD. The role of intracellular compartmentalization on tRNA processing and modification. RNA Biol. 2018;15:554–566.
  • Matera AG, Wang Z. A day in the life of the spliceosome. Nat Rev Mol Cell Biol. 2014;15:108–121.
  • Jarrous N. Roles of RNase P and its subunits. Trends Genet. 2017;33:594–603.
  • AJ CQ, Bugai A, Barboric M. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res. 2016;44:7527–7539.
  • Rak R, Dahan O, Pilpel Y. Repertoires of tRNAs: the couplers of genomics and proteomics. Annu Rev Cell Dev Biol. 2018;34:239–264.
  • Goodarzi H, Nguyen HCB, Zhang S, et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell. 2016;165:1416–1427.
  • Cavaille J, Buiting K, Kiefmann M, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A. 2000;97:14311–14316.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. Vol. 17. 2011.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359.
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842.
  • Li H, Handsaker B, Wysoker A, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079.
  • Kohn M, Ihling C, Sinz A, et al. The Y3** ncRNA promotes the 3ʹ end processing of histone mRNAs. Genes Dev. 2015;29:1998–2003.
  • Wachter K, Kohn M, Stohr N, et al. Subcellular localization and RNP formation of IGF2BPs (IGF2 mRNA-binding proteins) is modulated by distinct RNA-binding domains. Biol Chem. 2013;394:1077–1090.
  • Kohn M, Pazaitis N, Why HS. YRNAs? About versatile RNAs and their functions. Biomolecules. 2013;3:143–156.
  • Wolin SL, Belair C, Boccitto M, et al. Non-coding Y RNAs as tethers and gates: insights from bacteria. RNA Biol. 2013;10:1602–1608.
  • Gendron M, Roberge D, Boire G. Heterogeneity of human Ro ribonucleoproteins (RNPS): nuclear retention of Ro RNPS containing the human hY5 RNA in human and mouse cells. Clin Exp Immunol. 2001;125:162–168.
  • Simons FH, Rutjes SA, van Venrooij WJ, et al. The interactions with Ro60 and La differentially affect nuclear export of hY1 RNA. RNA. 1996;2:264–273.
  • Xue D, Shi H, Smith JD, et al. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Proc Natl Acad Sci U S A. 2003;100:7503–7508.
  • Song J, Mo B, Chen X. Uridylation and adenylation of RNAs. Sci China Life Sci. 2015;58:1057–1066.
  • Viegas SC, Silva IJ, Apura P, et al. Surprises in the 3ʹ-end: ‘U’ can decide too! Febs J. 2015;282:3489–3499.
  • Heo I, Joo C, Kim Y-K, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138:696–708.
  • Berndt H, Harnisch C, Rammelt C, et al. Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA. 2012;18(5):958–972.
  • Schaub M, Keller W. RNA editing by adenosine deaminases generates RNA and protein diversity. Biochimie. 2002;84:791–803.
  • Oakes E, Vadlamani P, Hundley HA. Methods for the Detection of Adenosine-to-Inosine Editing Events in Cellular RNA. Methods Mol Biol. 2017;1648:103–127.
  • Su AA, Randau L. A-to-I and C-to-U editing within transfer RNAs. Biochemistry (Mosc). 2011;76:932–937.
  • Hopper AK. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics. 2013;194:43–67.
  • Schramm L, Hernandez N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 2002;16:2593–2620.
  • Ramsay EP, Vannini A. Structural rearrangements of the RNA polymerase III machinery during tRNA transcription initiation. Biochim Biophys Acta Gene Regul Mech. 2018;1861:285–294.
  • Cuellar-Partida G, Buske FA, McLeay RC, et al. Epigenetic priors for identifying active transcription factor binding sites. Bioinformatics. 2012;28:56–62.
  • Chan PP, Lowe TM. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 2016;44:D184–9.
  • Juhling F, Morl M, Hartmann RK, et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 2009;37:D159–62.
  • An integrated encyclopedia of DNA elements in the human genome. Nature. ENCODE Project Consortium. 2012;489:57–74.
  • Maraia RJ, Mattijssen S, Cruz-Gallardo I, et al. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. Wiley Interdiscip Rev RNA. 2017;8(6):10.1002/wrna.1430.
  • Weidensdorfer D, Stohr N, Baude A, et al. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA. 2009;15:104–115.
  • Yeganeh M, Praz V, Cousin P, et al. Transcriptional interference by RNA polymerase III affects expression of the Polr3e gene. Genes Dev. 2017;31:413–421.
  • Will CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3:a003707-a003707.
  • Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA. 2013;4:17–34.
  • Fox AH, Lam YW, Leung AKL, et al. Paraspeckles: a novel nuclear domain. Curr Biol. 2002;12:13–25.
  • Fabini G, Rutjes SA, Zimmermann C, et al. Analysis of the molecular composition of Ro ribonucleoprotein complexes. Identification of novel Y RNA-binding proteins. Eur J Biochem. 2000;267:2778–2789.
  • Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–726.
  • Hutchinson JN, Ensminger AW, Clemson CM, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics. 2007;8:39.
  • Täuber H, Hüttelmaier S, Köhn M. POLIII-derived non-coding RNAs acting as scaffolds and decoys. J Mol Cell Biol. 2019;11:880–885.
  • Choudhry H, Albukhari A, Morotti M, et al. Tumor hypoxia induces nuclear paraspeckle formation through HIF-2alpha dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene. 2015;34:4482–4490.
  • Pan LJ, Zhong T-F, Tang R-X, et al. Upregulation and clinicopathological significance of long non-coding NEAT1 RNA in NSCLC tissues. Asian Pac J Cancer Prev. 2015;16:2851–2855.
  • Guo S, Chen W, Luo Y, et al. Clinical implication of long non-coding RNA NEAT1 expression in hepatocellular carcinoma patients. Int J Clin Exp Pathol. 2015;8:5395–5402.