780
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Structural studies of RNase M5 reveal two-metal-ion supported two-step dsRNA cleavage for 5S rRNA maturation

ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1996-2006 | Received 14 Nov 2020, Accepted 30 Jan 2021, Published online: 23 Feb 2021

References

  • Nikolaev N, Silengo L, Schlessinger D. Synthesis of a large precursor to ribosomal RNA in a mutant of escherichia coli. Proc Natl Acad Sci. 1973;70:3361–3365.
  • Zingales B, Colli W. Ribosomal RNA genes in Bacillus subtilis Evidence for a cotranscription mechanism. BBA Sect Nucleic Acids Protein Synth. 1977;474:562–577.
  • Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol. 1990;44:105–129.
  • Baumgardt K, Gilet L, Figaro S, et al. The essential nature of YqfG, a YbeY homologue required for 3ʹ maturation of Bacillus subtilis 16S ribosomal RNA is suppressed by deletion of RNase R. Nucleic Acids Res. 2018;46:8605–8615.
  • Condon C, Brechemier-Baey D, Beltchev B, et al. Identification of the gene encoding the 5S ribosomal RNA maturase in bacillus subtilis: mature 5S rRNA is dispensable for ribosome function. RNA. 2001;7:242–253.
  • Sogin ML, Pace NR. In vitro maturation of precursors of 5S ribosomal RNA from bacillus subtilis. Nature. 1974;252:598–600.
  • Sogin ML, Pace NR. Nucleotide sequence of 5 S ribosomal RNA precursor from bacillus subtilis. J Biol Chem. 1976;251:3480–3488.
  • Meyhack B, Pace B, Pace NR. Involvement of precursor-specific segments in the in vitro maturation of bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1977;16:5009–5015.
  • Redko Y, Bechhofer DH, Condon C. Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol Microbiol. 2008;68:1096–1106.
  • Oerum S, Dendooven T, Catala M, et al. Structures of B. subtilis maturation RNases captured on 50S ribosome with Pre-rRNAs. Mol Cell. 2020;80:1–10.
  • Stahl DA, Pace B, Marsh T, et al. The ribonucleoprotein substrate for a ribosomal RNA-processing nuclease. J Biol Chem. 1984;259:11448–11453.
  • Pace B, Stahl DA, Pace NR. The catalytic element of a ribosomal RNA-processing complex*. J Biol Chem. 1984;259:11454–11458.
  • Redko Y, Condon C. Ribosomal protein L3 bound to 23S precursor rRNA stimulates its maturation by Mini-III ribonuclease. Mol Microbiol. 2009;71:1145–1154.
  • Aravind L, Leipe DD, Koonin EV. Toprim - A conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 1998;26:4205–4213.
  • Dong KC, Berger JM. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature. 2007;450:1201–1205.
  • Zhang H, Barcelo JM, Lee B, et al. Human mitochondrial topoisomerase I. Proc Natl Acad Sci. 2002;98:10608–10613.
  • Cao N, Tan K, Annamalai T, et al. Investigating mycobacterial topoisomerase I mechanism from the analysis of metal and DNA substrate interactions at the active site. Nucleic Acids Res. 2018;46:7296–7308.
  • Schiltz CJ, Lee A, Partlow EA, et al. Structural characterization of class 2 OLD family nucleases supports a two-metal catalysis mechanism for cleavage. Nucleic Acids Res. 2019;47:9448–9463.
  • Harding MM. Geometry of metal-ligand interactions in proteins. Acta Crystallogr Sect D Biol Crystallogr. 2001;57:401–411.
  • Nowotny M, Gaidamakov SA, Crouch RJ, et al. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell. 2005;121:1005–1016.
  • Nowotny M, Yang W. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. Embo J. 2006;25:1924–1933.
  • Allemand F, Mathy N, Brechemier-Baey D, et al. The 5S rRNA maturase, ribonuclease M5, is a Toprim domain family member. Nucleic Acids Res. 2005;33:4368–4376.
  • Holm L, Laakso LM. Dali server update. Nucleic Acids Res. 2016;44:W351–W355.
  • Negi SS, Schein CH, Oezguen N, et al. InterProSurf: a web server for predicting interacting sites on protein surfaces. Bioinformatics. 2007;23:3397–3399.
  • Wang H, Di Gate RJ, Seeman NC. An RNA topoisomerase. Proc Natl Acad Sci. 2002;93:9477–9482.
  • Ahmad M, Xue Y, Lee SK, et al. RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res. 2016;44:6335–6349.
  • Xu D, Shen W, Guo R, et al. Top3β is an RNA topoisomerase that works with Fragile X syndrome protein to promote synapse formation. Nat Neurosci. 2013;16:1238–1247.
  • Corbett KD, Berger JM. Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct. 2004;33:95–118.
  • Stahl DA, Meyhack B, Pace NR. Recognition of local nucleotide conformation in contrast to sequence by a rRNA processing endonuclease. Proc Natl Acad Sci U S A. 1980;77:5644–5648.
  • Piotto M, Saudek V, Sklenar V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992;2:661–665.
  • Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2:2212–2221.
  • Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr. 1997;53:240–255.
  • Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr. 2004;60:2126–2132.
  • Heping Zheng WM. Validating metal binding sites in macromolecule structures using the CheckMyMetal web server. Nat Protoc. 2014;9:156–170.
  • Evrard G, Mareuil F, Bontems F, et al. DADIMODO: a program for refining the structure of multidomain proteins and complexes against small-angle scattering data and NMR-derived restraints. J Appl Crystallogr. 2011;44:1264–1271.
  • Schneidman-Duhovny D, Hammel M, Tainer JA, et al. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J. 2013;105:962–974.
  • Lau AMC, Ahdash Z, Martens C, et al. Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics. 2019;35:3171–3173.
  • Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.