1,667
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

M6A-BiNP: predicting N6-methyladenosine sites based on bidirectional position-specific propensities of polynucleotides and pointwise joint mutual information

, ORCID Icon &
Pages 2498-2512 | Received 24 Feb 2021, Accepted 10 May 2021, Published online: 23 Jun 2021

Reference

  • Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999;286(5439):481–486.
  • Motorin Y, Helm M. RNA nucleotide methylation. Wiley Interdiscip Rev-RNA. 2011;2(5):611–631.
  • Cantara WA, Crain PF, Rozenski J, et al. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 2011;39(suppl_1):D195–D201.
  • Deng X, Chen K, Luo G, et al. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. 2015;43(13):6557–6567.
  • Dominissini D, Moshitch-moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–206.
  • Luo G, Macqueen A, Zheng G, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Commun. 2014;5(1):5630.
  • Wu R, Jiang D, Wang Y, et al. N6-Methyladenosine (m6A) Methylation in mRNA with a dynamic and reversible epigenetic modification. Mol Biotechnol. 2016;58(7):450–459.
  • Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95.
  • Ping X, Sun B, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–189.
  • Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29.
  • Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–887.
  • Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014;15(5):313–326.
  • Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′UTRs and near stop codons. Cell. 2012;149(7):1635–1646.
  • Nilsen TW. Internal mRNA methylation finally finds functions. Science. 2014;343(6176):1207–1208.
  • Geula S, Moshitchmoshkovitz S, Dominissini D, et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347(6225):1002–1006.
  • Lan Q, Liu P, Haase J, et al. The critical role of RNA m6A methylation in cancer. Cancer Res. 2019;79(7):1285–1292.
  • Cui Q, Shi H, Ye P, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18(11):2622–2634.
  • Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A. 2016;113(14):E2047–E2056.
  • Dominissini D, Moshitchmoshkovitz S, Salmondivon M, et al. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 2013;8(1):176–189.
  • Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767–772.
  • Ke S, Alemu EA, Mertens C, et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 2015;29(19):2037–2053.
  • Zhang Z, Chen L, Zhao Y, et al. Single-base mapping of m6A by an antibody-independent method. Sci Adv. 2019;5(7):eaax0250.
  • Schwartz S, Agarwala SD, Mumbach MR, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013;155(6):1409–1421.
  • Li Y, Wang X, Li C, et al. Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biol. 2014;11(9):1180–1188.
  • Chen W, Feng P, Ding H, et al. iRNA-Methyl: identifying N6-methyladenosine sites using pseudo nucleotide composition. Anal Biochem. 2015;490:26–33.
  • Chen W, Tran H, Liang Z, et al. Identification and analysis of the N6-methyladenosine in the Saccharomyces cerevisiae transcriptome. Sci Rep. 2015;5:13859.
  • Chen W, Feng P, Ding H, et al. Identifying N6-methyladenosine sites in the Arabidopsis thaliana transcriptome. Mol Genet Genomics. 2016;291(6):2225–2229.
  • Zhou Y, Zeng P, Li Y-H, et al. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10):e91–e91.
  • Li G, Liu Z, Shen H, et al. TargetM6A: identifying N6-methyladenosine sites from RNA sequences via position-specific nucleotide propensities and a support vector machine. IEEE Trans Nanobiosci. 2016;15(7):674–682.
  • Liu Z, Xiao X, Yu D, et al. pRNAm-PC: predicting N6-methyladenosine sites in RNA sequences via physical–chemical properties. Anal Biochem. 2016;497:60–67.
  • Xing P, Su R, Guo F, et al. Identifying N6-methyladenosine sites using multi-interval nucleotide pair position specificity and support vector machine. Sci Rep. 2017;7:46757.
  • Wang X, Yan R. RFAthM6A: a new tool for predicting m6A sites in Arabidopsis thaliana. Plant Mol Biol. 2018;96(3):327–337.
  • Zhao Z, Peng H, Lan C, et al. Imbalance learning for the prediction of N6-methylation sites in mRNAs. BMC Genomics. 2018;19(1):574.
  • Qiang X, Chen H, Ye X, et al. M6AMRFS: robust prediction of N6-methyladenosine sites with sequence-based features in multiple species. Front Genet. 2018;9:495.
  • Wei L, Chen H, Su R. M6APred-EL: a sequence-based predictor for identifying N6-methyladenosine sites using ensemble learning. Mol Ther-Nucl Acids. 2018;12:635–644.
  • Wei L, Su R, Wang B, et al. Integration of deep feature representations and handcrafted features to improve the prediction of N6-methyladenosine sites. Neurocomputing. 2019;324:3–9.
  • Nazari I, Tahir M, Tayara H, et al. iN6-Methyl (5-step): identifying RNA N6-methyladenosine sites using deep learning mode via Chou’s 5-step rules and Chou’s general PseKNC. Chemometrics Intell Lab Syst. 2019;193:103811.
  • Zou Q, Xing P, Wei L, et al. Gene2vec: gene subsequence embedding for prediction of mammalian N (6)-methyladenosine sites from mRNA. RNA. 2019;25(2):205–218.
  • Chen Z, Zhao P, Li F, et al. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Brief Bioinformatics. 2020;21(5):1676–1696.
  • Chen K, Wei Z, Zhang Q, et al. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Res. 2019;47(7):e41.
  • Liu K, Chen W. iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications. Bioinformatics. 2020;36(11):3336–3342.
  • Liu K, Cao L, Du P, et al. im6A-TS-CNN: identifying the N(6)-Methyladenine site in multiple tissues by using the convolutional neural network. Mol Ther Nucleic Acids. 2020;21:1044–1049.
  • Dao F, Lv H, Yang Y, et al. Computational identification of N6-methyladenosine sites in multiple tissues of mammals. Comput Struct Biotechnol J. 2020;18:1084–1091.
  • Li J, He S, Guo F, et al. HSM6AP: a high-precision predictor for the Homo sapiens N6-methyladenosine (m^6 A) based on multiple weights and feature stitching. RNA Biol. 2021. DOI:https://doi.org/10.1080/15476286.2021.1875180
  • Zhai J, Song J, Zhang T, et al. deepEA: a containerized web server for interactive analysis of epitranscriptome sequencing data. Plant Physiol. 2021;185(1):29–33.
  • Luo X, Li H, Liang J, et al. RMVar: an updated database of functional variants involved in RNA modifications. Nucleic Acids Res. 2021;49(D1):D1405–D1412.
  • Chen K, Song B, Tang Y, et al. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis. Nucleic Acids Res. 2021;49(D1):D1396–D1404.
  • Tang Y, Chen K, Song B, et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021;49(D1):D134–D143.
  • Chen W, Feng P, Ding H, et al. Benchmark data for identifying N6-methyladenosine sites in the Saccharomyces cerevisiae genome. Data Brief. 2015;5:376–378.
  • Chen W, Tang H, Lin H. MethyRNA: a web server for identification of N6-methyladenosine sites. J Biomol Struct Dyn. 2017;35(3):683–687.
  • Zhao X, Zhang Y, Ning Q, et al. Identifying N6-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer. J Theor Biol. 2019;467:39–47.
  • Akbar S, Hayat M. iMethyl-STTNC: identification of N6-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences. J Theor Biol. 2018;455:205–211.
  • Hu L, Gao W, Zhao K, et al. Feature selection considering two types of feature relevancy and feature interdependency. Expert Syst Appl. 2018;93:423–434.
  • Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005;27(8):1226–1238.
  • Xie J, Wang M, Zhou Y, et al. Differential expression gene selection algorithms for unbalanced gene datasets. Chin J Comput. 2019;42(6):1232–1251.
  • Xu Y, Ding Y, Ding J, et al. Phogly-PseAAC: prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity. J Theor Biol. 2015;379:10–15.
  • He W, Jia C, Zou Q. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. Bioinformatics. 2019;35(4):593–601.
  • Liu B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief Bioinform. 2019;20(4):1280–1294.
  • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–297.
  • Chen W, Feng P, Song X, et al. iRNA-m7G: identifying N7-methylguanosine sites by fusing multiple features. Mol Ther-Nucl Acids. 2019;18:269–274.
  • Wang M, Ding L, Xu M, et al. A novel method detecting the key clinic factors of portal vein system thrombosis of splenectomy & cardia devascularization patients for cirrhosis & portal hypertension. BMC Bioinformatics. 2019;20(Suppl 22):720.
  • Wei L, Luan S, Nagai LAE, et al. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics. 2019;35(8):1326–1333.
  • Xie J, Wang C. Using support vector machines with a novel hybrid feature selection method for diagnosis of erythemato-squamous diseases. Expert Syst Appl. 2011;38(5):5809–5815.
  • Lin H, Liang Z, Tang H, et al. Identifying sigma70 promoters with novel pseudo nucleotide composition. IEEE-ACM Trans Comput Biol Bioinform. 2019;16(4):1316–1321.
  • Chang C, Lin C. LIBSVM: a library for support vector machines. ACM T Intel Syst Tec. 2011;2(3):27.
  • Sabooh MF, Iqbal N, Khan M, et al. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J Theor Biol. 2018;452:1–9.
  • Chen W, Song X, Lv H, et al. iRNA-m2G: identifying N2-methylguanosine sites based on sequence derived information. Mol Ther-Nucl Acids. 2019;18:253–258.
  • Yang H, Qiu W, Liu G, et al. iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int J Biol Sci. 2018;14(8):883–891.
  • Zhang J, Feng P, Lin H, et al. Identifying RNA N6-methyladenosine sites in Escherichia coli genome. Front Microbiol. 2018;9:955.
  • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–874.
  • Davis J, Goadrich M The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006. Association for Computing Machinery, pp 233–240.
  • Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One. 2015;10(3):e0118432.
  • Vacic V, Iakoucheva LM, Radivojac P. Two sample logo: a graphical representation of the differences between two sets of sequence alignments. Bioinformatics. 2006;22(12):1536–1537.
  • Xiang S, Yan Z, Liu K, et al. AthMethPre: a web server for the prediction and query of mRNA m6A sites in Arabidopsis thaliana. Mol Biosyst. 2016;12(11):3333–3337.
  • Tahir M, Hayat M, Chong KT. Prediction of n6-methyladenosine sites using convolution neural network model based on distributed feature representations. Neural Netw. 2020;129:385–391.
  • Rehman MU, Hong KJ, Tayara H, et al. m6A-NeuralTool: convolution neural tool for RNA N6-Methyladenosine site identification in different species. IEEE Access. 2021;9:17779–17786.
  • Alam W, Ali SD, Tayara H, et al. A CNN-based RNA n6-methyladenosine site predictor for multiple species using heterogeneous features representation. IEEE Access. 2020;8:138203–138209.
  • Pian C, Yang Z, Yang Y, et al. Identifying RNA N6-Methyladenine sites in three species based on a markov model. Front Genet. 2021;12:428.
  • Zhang M, Sun J, Liu Z, et al. Improving N6-methyladenosine site prediction with heuristic selection of nucleotide physical–chemical properties. Anal Biochem. 2016;508:104–113.
  • Chen W, Xing P, Zou Q. Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble support vector machines. Sci Rep. 2017;7(1):1–8.
  • Huang Y, He N, Chen Y, et al. BERMP: a cross-species classifier for predicting m6A sites by integrating a deep learning algorithm and a random forest approach. Int J Biol Sci. 2018;14(12):1669.
  • Mahmoudi O, Wahab A, Chong KT. iMethyl-Deep: N6 methyladenosine identification of yeast genome with automatic feature extraction technique by using deep learning algorithm. Genes (Basel). 2020;11(5):529.
  • Zhang L, Qin X, Liu M, et al. DNN-m6A: a cross-species method for identifying RNA N6-methyladenosine sites based on deep neural network with multi-information fusion. Genes (Basel). 2021;12(3):354.