3,018
Views
4
CrossRef citations to date
0
Altmetric
Review

N6-methyladenosine RNA modification and its interaction with regulatory non-coding RNAs in colorectal cancer

, , , , , , , , & show all
Pages 551-561 | Received 07 May 2021, Accepted 26 Aug 2021, Published online: 21 Oct 2021

References

  • Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev (in eng). 2015 Jul 1;29(13):1343–1355.
  • He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Mol Cancer (in eng). 2019 Dec 4;18(1):176.
  • Ping XL, Sun B-F, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res (in eng). 2014 Feb;24(2):177–189.
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A (in eng). 1974 Oct;71(10):3971–3975.
  • Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol (in eng). 2011 Oct 16;7(12):885–887.
  • Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods (in eng). 2015 Aug;12(8):767–772.
  • Warda AS, Kretschmer J, Hackert P, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep (in eng). 2017 Nov;18(11):2004–2014.
  • Wen S, Wei Y, Zen C, et al. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer (in eng). 2020 Dec 12;19(1):171.
  • Gilbert WV, Bell TA, Schaening C. Messenger RNA modifications: form, distribution, and function. Science (in eng). 2016 Jun 17;352(6292):1408–1412.
  • Huang H, Weng H, Chen J. m(6)A Modification in Coding and Non-coding RNAs: roles and Therapeutic Implications in Cancer. Cancer Cell (in eng). 2020 Mar 16;37(3):270–288.
  • Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3ʹ UTRs and near stop codons. Cell (in eng). 2012 Jun 22;149(7):1635–1646.
  • Taft RJ, Pang KC, Mercer TR, et al. Non-coding RNAs: regulators of disease. J Pathol (in eng). 2010 Jan;220(2):126–139.
  • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell (in eng). 2014 Mar 27;157(1):77–94.
  • Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics (in eng). 2014 Jan;9(1):3–12.
  • Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin (in eng). 2020 May;70(3):145–164.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin (in eng). 2020 Jan;70(1):7–30.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (in eng). 2018 Nov;68(6):394–424.
  • Li J, Liang L, Yang Y, et al. N(6)-methyladenosine as a biological and clinical determinant in colorectal cancer: progression and future direction. Theranostics in eng). 2021;11(6):2581–2593.
  • Li Q, He W, Wan G. Methyladenosine Modification in RNAs: classification and Roles in Gastrointestinal Cancers. Front Oncol in eng). 2020;10:586789.
  • Fang Z, Hu Y, Hu J, et al. The crucial roles of N(6)-methyladenosine (m(6)A) modification in the carcinogenesis and progression of colorectal cancer. Cell Biosci (in eng). 2021 Apr 9;11(1):72.
  • Yang Y, Hsu PJ, Chen YS, et al. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res (in eng). 2018 Jun;28(6):616–624.
  • Deng X, Su R, Weng H, et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res (in eng). 2018 May;28(5):507–517.
  • Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell (in eng). 2016 Jul 21;63(2):306–317.
  • Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol (in eng). 2014 Feb;10(2):93–95.
  • Weng H, Huang H, Wu H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m(6)A modification. Cell Stem Cell (in eng). 2018 Feb 1;22(2):191–205.e9.
  • Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell (in eng). 2017 May 18;169(5):824–835.e14.
  • Jia G, Yang C-G, Yang S, et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett (in eng). 2008 Oct 15;582(23–24):3313–3319.
  • Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell (in eng). 2013 Jan 10;49(1):18–29.
  • Ueda Y, Ooshio I, Fusamae Y, et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep (in eng). 2017 Feb 13;7(1):42271.
  • Lin S, Choe J, Du P, et al. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell (in eng). 2016 May 5;62(3):335–345.
  • Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m(6) A-IGF2BP2-dependentmechanism in colorectal carcinoma. Mol Cancer (in eng). 2019 Jun 24;18(1):112.
  • Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer (in eng). 2020 Jun 17;19(1):106.
  • Wang S, Sun C, Li J, et al. Roles of RNA methylation by means of N(6)-methyladenosine (m(6)A) in human cancers. Cancer Lett (in eng). 2017 Nov 1;(408):112–120.
  • Bokar JA, Rath-Shambaugh ME, Ludwiczak R, et al. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem (in eng). 1994 Jul 1;269(26):17697–17704.
  • Wang L, Hui H, Agrawal K, et al. m6A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J (in eng). 2020 Oct 15;39(20):e104514.
  • Uddin MB, Roy KR, Hosain SB, et al. An N(6)-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem Pharmacol (in eng). 2019 Feb;160:134–145.
  • Liu T, Li C, Jin L, et al. The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma. Med Sci Monit (in eng). 2019 Dec 11;25:9435–9445.
  • Xiang S, Liang X, Yin S, et al. N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell proliferation through enhancing MYC expression. Am J Transl Res (in eng). 2020;12(5:1789–1806. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270026/pdf/ajtr0012-1789.pdf
  • Zhou D, Tang W, Xu Y, et al. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing YPEL5. Mol Oncol (in eng). 2021 Jan 7;15(8):2172–2184.
  • Liu X, Su K, Sun X, et al. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J Exp Clin Cancer Res (in eng). 2021 Apr 15;40(1):132.
  • Shen C, Xuan B, Yan T, et al. m(6) A-dependentglycolysis enhances colorectal cancer progression. Mol Cancer (in eng). 2020 Apr 3;19(1):72.
  • Xu J, Chen Q, Tian K, et al. m6A methyltransferase METTL3 maintains colon cancer tumorigenicity by suppressing SOCS2 to promote cell proliferation. Oncol Rep (in eng). 2020 Sep;44(3):973–986.
  • Zhu W, Si Y, Xu J, et al. Methyltransferase like 3 promotes colorectal cancer proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner. J Cell Mol Med (in eng). 2020 Mar;24(6):3521–3533.
  • Zhang Y, Kang M, Zhang B, et al. m(6)A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer (in eng). 2019 Dec 18;18(1):185.
  • Hou P, Meng S, Li M, et al. LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res (in eng). 2021 Feb 1;40(1):52.
  • Song P, Feng L, Li J, et al. β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Mol Cancer (in eng). 2020 Aug 24;19(1):129.
  • Chen H, Gao S, Liu W, et al. RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6) A-GLUT1-mTORC1Axis and is a therapeutic target. Gastroenterology (in eng). 2021 Mar;160(4):1284–1300.e16.
  • Deng R, Cheng Y, Ye S, et al. m(6)A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco Targets Ther (in eng). 2019;12:4391–4402.
  • Wang S, Gan M, Chen C, et al. Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N6-methyladenosine methylation through methyltransferase-like 14. Cancer Sci (in eng). 2021 Jun 7;112(8):3243–3254.
  • Wang S, Fan X, Zhu J, et al. The differentiation of colorectal cancer is closely relevant to m6A modification. Biochem Biophys Res Commun (in eng). 2021 Feb 8;546:65–73.
  • Zhuang J, Lin C, Ye J. m6A RNA methylation regulators contribute to malignant progression in rectal cancer. J Cell Physiol (in eng). 2020 Sep;235(9):6300–6306.
  • Zhang Z, Gao Q, Wang S. Kinase GSK3β functions as a suppressor in colorectal carcinoma through the FTO-mediated MZF1/c-Myc axis. J Cell Mol Med (in eng). 2021 Feb 2. DOI:10.1111/jcmm.16291.
  • Yue C, Chen J, Li Z, et al. microRNA-96 promotes occurrence and progression of colorectal cancer via regulation of the AMPKα2-FTO-m6A/MYC axis. J Exp Clin Cancer Res (in eng). 2020 Nov 12;39(1):240.
  • Liu J, Ren D, Du Z, et al. m(6)A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression. Biochem Biophys Res Commun (in eng). 2018 Aug 25;502(4):456–464.
  • Ruan DY, Li T, Wang Y-N, et al. FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene (in eng). 2021 Jul 3;40(33):5168–5181.
  • Li N, Kang Y, Wang L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci U S A (in eng). 2020 Aug 18;117(33):20159–20170.
  • Ji L, Chen S, Gu L, et al. Exploration of potential roles of m6A regulators in colorectal cancer prognosis. Front Oncol (in eng). 2020;10:768.
  • Bai Y, Yang C, Wu R. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol (in eng). et al. 2019;9:332.
  • Nishizawa Y, Konno M, Asai A, et al. Oncogene c-Myc promotes epitranscriptome m(6)A reader YTHDF1 expression in colorectal cancer. Oncotarget (in eng). 2018 Jan 26;9(7):7476–7486.
  • Xu D, Shao J, Song H, et al. The YTH domain family of N6-Methyladenosine “readers” in the diagnosis and prognosis of colonic adenocarcinoma. Biomed Res Int (in eng). 2020;2020:9502560.
  • Zhang J, Cheng X, Wang J, et al. Gene signature and prognostic merit of M6a regulators in colorectal cancer. Exp Biol Med (Maywood) (in eng). 2020 Sep;245(15):1344–1354.
  • Tanabe A, Tanikawa K, Tsunetomi M, et al. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett (in eng). 2016 Jun 28;376(1):34–42.
  • Chen RX, Chen X, Xia L-P, et al. N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun (in eng). 2019 Oct 16;10(1):4695.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell (in eng). 2004 Jan 23;116(2):281–297.
  • Alarcón CR, Lee H, Goodarzi H, et al. N6-methyladenosine marks primary microRNAs for processing. Nature (in eng). 2015 Mar 26;519(7544):482–485.
  • Ma J-Z, Yang F, Zhou -C-C, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65(2):529–543.
  • Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal Cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res (in eng). 2019 Sep 6;38(1):393.
  • Chen X, Xu M, Xu X, et al. METTL14 suppresses CRC progression via regulating N6-methyladenosine-dependent primary miR-375 processing. Mol Ther (in eng). 2020 Feb 5;28(2):599–612.
  • Yang L, Ma Y, Han W, et al. Proteinase-activated receptor 2 promotes cancer cell migration through RNA methylation-mediated repression of miR-125b. J Biol Chem (in eng). 2015 Oct 30;290(44):26627–26637.
  • Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science (in eng). 2007 Jun 8;316(5830):1484–1488.
  • Zuo L, Su H, Zhang Q, et al. “Comprehensive analysis of lncRNAs N(6)-methyladenosine modification in colorectal cancer. Aging (Albany NY) (in eng). 2021 Jan 20;12. DOI:10.18632/aging.202383.
  • Wu Y, Yang X, Chen Z, et al. m(6) A-inducedlncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer (in eng). 2019 Apr 13;18(1):87.
  • Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer (in eng). 2020 Feb 28;19(1):46.
  • Lei M, Zheng G, Ning Q, et al. Translation and functional roles of circular RNAs in human cancer. Mol Cancer (in eng). 2020 Feb 15;19(1):30.
  • Zhou C, Molinie B, Daneshvar K, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep (in eng). 2017 Aug 29;20(9):2262–2276.
  • Zhang L, Hou C, Chen C, et al. The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer (in eng). 2020 Jun 10;19(1):105.
  • Chen C, Yuan W, Zhou Q, et al. N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics (in eng). 2021;11(9):4298–4315.
  • Guo Y, Guo Y, Chen C, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Mol Cancer (in eng). 2021 Jun 25;20(1):93.
  • Zhu S, Wang J-Z, Chen D, et al. An oncopeptide regulates m(6)A recognition by the m(6)A reader IGF2BP1 and tumorigenesis. Nat Commun (in eng). 2020 Apr 3;11(1):1685.
  • Shen XP, Ling X, Lu H, et al. Low expression of microRNA-1266 promotes colorectal cancer progression via targeting FTO. Eur Rev Med Pharmacol Sci (in eng). 2018 Dec;22(23):8220–8226.
  • Ni W, Yao S, Zhou Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer (in eng). 2019 Oct 16;18(1):143.
  • Wang Y, Lu JH, Wu QN, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer (in eng). 2019 Dec 2;18(1):174.
  • Liu X, Liu L, Dong Z, et al. Expression patterns and prognostic value of m(6) A-relatedgenes in colorectal cancer. Am J Transl Res (in eng). 2019;11(7):3972–3991. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684930/pdf/ajtr0011-3972.pdf
  • Lan H, Liu Y, Liu J, et al. Tumor-associated macrophages promote oxaliplatin resistance via METTL3-mediated m6A of TRAF5 and necroptosis in colorectal cancer. Mol Pharm (in eng). 2021 Feb 8;18(3):1026–1037.
  • Chen P, Liu XQ, Lin X, et al. Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol Ther Oncolytics (in eng). 2021 Mar 26;20:228–239.
  • Yi N, Arabella W, Ziyou L, et al. N6-methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharm Sin B. 2018;8(6):833–843.
  • Bader JP, Brown NR, Chiang PK, et al. 3-Deazaadenosine, an inhibitor of adenosylhomocysteine hydrolase, inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells. Virology (in eng). 1978 Sep;89(2):494–505.
  • Chen B, Ye F, Yu L, et al. Development of Cell-Active N6-methyladenosine RNA demethylase FTO Inhibitor. J Am Chem Soc (in eng). 2012 Oct 31;134(43):17963–17971.
  • Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res (in eng). 2015 Jan;43(1):373–384.
  • Shusuke T, Timothy JZ, Ajay G. Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 2021;1875(1):188491.
  • Zhang Z, Luo K, Zou Z, et al. Genetic analyses support the contribution of mRNA N(6)-methyladenosine (m(6)A) modification to human disease heritability. Nat Genet (in eng). 2020 Sep;52(9):939–949.
  • Liu T, Yang S, Sui J, et al. Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol (in eng). 2020 Jan;235(1):548–562.
  • Wang X, Feng J, Xue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature (in eng). 2016 Jun 23;534(7608):575–578.
  • Carroll PA, Freie BW, Mathsyaraja H, et al. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med (in eng). 2018 Aug;12(4):412–425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.