1,089
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Inactivation of the riboswitch-controlled GMP synthase GuaA in Clostridioides difficile is associated with severe growth defects and poor infectivity in a mouse model of infection

, , , , , , , , & ORCID Icon show all
Pages 699-710 | Received 02 Jul 2021, Accepted 06 Sep 2021, Published online: 06 Oct 2021

References

  • Guery B, Galperine T, Barbut F. Clostridioides difficile: diagnosis and treatments. British Med J. 2019;366:l4609.
  • Cho JM, Pardi DS, Khanna S. Update on Treatment of Clostridioides difficile Infection. Mayo Clin Proc. 2020;95:758–769.
  • Rajasingham R, Enns EA, Khoruts A, et al. Cost-effectiveness of Treatment Regimens for Clostridioides difficile Infection: an Evaluation of the 2018 Infectious Diseases Society of America Guidelines. Clin Infect Dis. 2019;70:754–762.
  • Lünse CE, Schüller A, Mayer G. The promise of riboswitches as potential antibacterial drug targets. Int J Med Microbiol. 2014;304:79–92.
  • Blount KF, Breaker RR. Riboswitches as antibacterial drug targets. Nat Biotechnol. 2006;24:1558–1564.
  • Sudarsan N, Barrick JE, Breaker RR. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA. 2003;9:644–647.
  • Greenlee EB, Stav S, Atilho RM, et al. Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol. 2018;15
  • Weinberg Z, Lünse CE, Corbino KA, et al. Detection of 224 candidate structured RNAs by comparative analysis of specific subsets of intergenic regions. Nucleic Acids Res. 2017;45:10811–10823.
  • Serganov A, Nudler E. A Decade of Riboswitches. Cell. 2013;152:17–24.
  • McCown PJ, Corbino KA, Stav S, et al. Riboswitch diversity and distribution. RNA. 2017;23:995–1011.
  • Bastet L, Dubé A, Massé E, et al. New insights into riboswitch regulation mechanisms. Mol Microbiol. 2011;80:1148–1154.
  • Hall CL, Lee VT. Cyclic‐di‐GMP regulation of virulence in bacterial pathogens. Wiley Interdiscip Rev RNA. 2018;9:e1454.
  • Christiansen LC, Schou S, Nygaard P, et al. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol. 1997;179:2540–2550.
  • Ebbole DJ, Zalkin H. Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biological Chem. 1987;262:8274–8287.
  • Xi H, Schneider BL, Reitzer L. Purine Catabolism in Escherichia coli and Function of Xanthine Dehydrogenase in Purine Salvage. J Bacteriol. 2000;182:5332–5341.
  • Mäntsälä P, Zalkin H. Cloning and sequence of Bacillus subtilis purA and guaA, involved in the conversion of IMP to AMP and GMP. J Bacteriol. 1992;174:1883–1890.
  • Shimaoka M, Takenaka Y, Mihara Y, et al. Effects of xapA and guaA Disruption on Inosine Accumulation in Escherichia coli. Biosci Biotechnol Biochem. 2014;70:3069–3072.
  • Kotloff KL, Pasetti MF, Barry EM, Nataro JP, Wasserman SS, Sztein MB, Picking WD, Levine MM. Deletion in the Shigella Enterotoxin Genes Further Attenuates Shigella flexneri 2a Bearing Guanine Auxotrophy in a Phase 1 Trial of CVD 1204 and CVD 1208. J Infect Dis. 2004;190:1745–1754.
  • Kofoed EM, Yan D, Katakam AK, et al. De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo. J Bacteriol. 2016;198:2001–2015.
  • Mandal M, Boese B, Barrick JE, et al. Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria. Cell. 2003;113:577–586.
  • Mulhbacher J, Brouillette E, Allard M, et al. Novel Riboswitch Ligand Analogs as Selective Inhibitors of Guanine-Related Metabolic Pathways. Plos Pathog. 2010;6:e1000865.
  • Regulski EE, Breaker RR. In-line probing analysis of riboswitches. In: Wilusz J, editor. Post-Transcriptional Gene Regulation. Methods Mol Biol. Vol. 419. Humana Press; 2008. p. 53–67.
  • Fagan RP, Fairweather NF. Clostridium difficile Has Two Parallel and Essential Sec Secretion Systems*. J Biol Chem. 2011;286:27483–27493.
  • Heap JT, Pennington OJ, Cartman ST, et al. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods. 2007;70:452–464.
  • Karlsson S, Burman LG, Åkerlund T. Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology+. 1999;145:1683–1693.
  • Ster C, Allard M, Boulanger S, et al. Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog. J Dairy Sci. 2013;96:1000–1008.
  • McFarland WC, Stocker BAD. Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella dublin and of two strains of Salmonella typhimurium. Microbiol Pathogen. 1987;3:129–141.
  • Russo TA, Jodush ST, Brown JJ, et al. Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol. 1996;22:217–229.
  • Stoddard CD, Widmann J, Trausch JJ, et al. Nucleotides Adjacent to the Ligand-Binding Pocket are Linked to Activity Tuning in the Purine Riboswitch. J Mol Biol. 2013;425:1596–1611.
  • Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 2002;419:952–956.
  • Chauvier A, Picard-Jean F, J-c B-D, et al. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation. Nat Commun. 2017;8:13892.
  • Wickiser JK, Winkler WC, Breaker RR, et al. The Speed of RNA Transcription and Metabolite Binding Kinetics Operate an FMN Riboswitch. Mol Cell. 2005;18:49–60.
  • Wickiser JK, Cheah MT, Breaker RR, et al. The Kinetics of Ligand Binding by an Adenine-Sensing Riboswitch. Biochemistry-US. 2005;44:13404–13414.
  • Daou N, Wang Y, Levdikov VM, et al. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. Plos One. 2019;14:e0206896.
  • Dineen SS, McBride SM, Sonenshein AL. Integration of Metabolism and Virulence by Clostridium difficile CodY. J Bacteriol. 2010;192:5350–5362.
  • Nawrocki KL, Edwards AN, Daou N, et al. CodY-Dependent Regulation of Sporulation in Clostridium difficile. J Bacteriol. 2016;198:2113–2130.
  • Sekulovic O, Fortier L-C. Global Transcriptional Response of Clostridium difficile Carrying the ϕCD38-2 Prophage. Appl Environ Microb. 2015;81:1364–1374.
  • Mulhbacher J, Lafontaine DA. Ligand recognition determinants of guanine riboswitches. Nucleic Acids Res. 2007;35:5568–5580.
  • Heap JT, Pennington OJ, Cartman ST, et al. A modular system for Clostridium shuttle plasmids. J Microbiol Methods. 2009;78:79–85.
  • Mani N, Lyras D, Barroso L, et al. Environmental Response and Autoregulation of Clostridium difficile TxeR, a Sigma Factor for Toxin Gene Expression. J Bacteriol. 2002;184:5971–5978.
  • Garneau JR, Valiquette L, Fortier L-C. Prevention of Clostridium difficile spore formation by sub-inhibitory concentrations of tigecycline and piperacillin/tazobactam. BMC Infect Dis. 2014;14:29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.