1,399
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

RR3DD: an RNA global structure-based RNA three-dimensional structural classification database

, , , , , , & ORCID Icon show all
Pages 738-746 | Received 10 Jun 2021, Accepted 27 Sep 2021, Published online: 18 Oct 2021

References

  • Griffiths-Jones S, Bateman A, Marshall M, et al. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439–441.
  • Boccaletto P, Magnus M, Almeida C, et al. RNArchitecture: a database and a classification system of RNA families, with a focus on structural information. Nucleic Acids Res. 2018;46:D202–D5.
  • Abraham M, Dror O, Nussinov R, et al. Analysis and classification of RNA tertiary structures. RNA. 2008;14(11):2274–2289.
  • Tamura M, Hendrix DK, Klosterman PS, et al. SCOR: structural Classification of RNA, version 2.0. Nucleic Acids Res. 2004;32(90001):D182–4.
  • Petrov AI, Zirbel CL, Leontis NB. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA. 2013;19(10):1327–1340.
  • Sarver M, Zirbel CL, Stombaugh J, et al. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol. 2008;56(1–2):215–252.
  • Ge P, Islam S, Zhong C, et al. De novo discovery of structural motifs in RNA 3D structures through clustering. Nucleic Acids Res. 2018;46(9):4783–4793.
  • Dror O, Nussinov R, Wolfson H. ARTS: alignment of RNA tertiary structures. Bioinformatics. 2005;21(Suppl 2):ii47–53.
  • Bottaro S, Lindorff-Larsen K. Mapping the universe of RNA tetraloop folds. Biophys J. 2017;113(2):257–267.
  • Appasamy SD, Hamdani HY, Ramlan EI, et al. InterRNA: a database of base interactions in RNA structures. Nucleic Acids Res. 2016;44(D1):D266–71.
  • Chojnowski G, Walen T, Bujnicki JM, et al. database of RNA 3D motifs and their interactions. Nucleic Acids Res. 2014;42(D1):D123–31.
  • Leontis NB, Zirbel CL. Nonredundant 3D structure datasets for RNA knowledge extraction and benchmarking. Nucleic Acids and Mol Bio. 2012;27:281–298.
  • Phan AT, Kuryavyi V, Darnell JC, et al. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat Struct Mol Biol. 2011;18(7):796–804.
  • Zheng J, Xie J, Hong X, et al. RMalign: an RNA structural alignment tool based on a novel scoring function RMscore. BMC Genomics. 2019;20(1):276.
  • Zheng J, Hong X, Xie J, et al. P3DOCK: a protein-RNA docking webserver based on template-based and template-free docking. Bioinformatics. 2020;36(1):96–103.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242.
  • Dias R, Kolaczkowski B. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data. BMC Bioinformatics. 2017;18(S5):102.
  • Gong P, Kortus MG, Nix JC, et al. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts. PLoS One. 2013;8(5):e60272.
  • Bachelin M, Hessler G, Kurz G, et al. Structure of a stereoregular phosphorothioate DNA/RNA duplex. Nat Struct Biol. 1998;5(4):271–276.
  • Fedoroff O, Salazar M, Reid BR. Structure of a DNA:RNA hybrid duplex. Why RNase H does not cleave pure RNA. J Mol Biol. 1993;233(3):509–523.
  • Salter J, Krucinska J, Alam S, et al. Water in the active site of an All-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Biochemistry. 2006;45(3):686–700.
  • Torelli AT, Krucinska J, Wedekind JE. A comparison of vanadate to a 2ʹ-5ʹ linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. RNA. 2007;13(7):1052–1070.
  • Huang H, Suslov NB, Li NS, et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat Chem Biol. 2014;10(8):686–691.
  • Yang D. G-Quadruplex DNA and RNA. Methods Mol Biol. 2019;2035:1–24.
  • Arora A, Dutkiewicz M, Scaria V, et al. Inhibition of translation in living eukaryotic cells by an RNA G-quadruplex motif. RNA. 2008;14(7):1290–1296.
  • Bonnal S, Schaeffer C, Creancier L, et al. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem. 2003;278(41):39330–39336.
  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48(3):443–453.
  • Capriotti E, Marti-Renom MA. Quantifying the relationship between sequence and three-dimensional structure conservation in RNA. BMC Bioinformatics. 2010;11(1):322.
  • Kundrotas PJ, Zhu Z, Janin J, et al. Templates are available to model nearly all complexes of structurally characterized proteins. Proc Natl Acad Sci U S A. 2012;109(24):9438–9441.
  • Zheng J, Kundrotas PJ, Vakser IA, et al. Template-based modeling of Protein-RNA interactions. PLoS Comput Biol. 2016;12(9):e1005120.
  • Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986;5(4):823–826.
  • Hartwick EW, Costantino DA, MacFadden A, et al. Ribosome-induced RNA conformational changes in a viral 3ʹ-UTR sense and regulate translation levels. Nat Commun. 2018;9(1):5074.
  • Kim SH, Suddath FL, Quigley GJ, et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974;185(4149):435–440.
  • Sharp SJ, Schaack J, Cooley L, et al. Structure and transcription of eukaryotic tRNA genes. CRC Crit Rev Biochem. 1985;19(2):107–144.
  • Yamashita S, Takeshita D, Tomita K. Translocation and rotation of tRNA during template-independent RNA polymerization by tRNA nucleotidyltransferase. Structure. 2014;22(2):315–325.
  • Barraud P, Schmitt E, Mechulam Y, et al. A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Res. 2008;36(15):4894–4901.
  • Zeng F, Chen Y, Remis J, et al. Structural basis of co-translational quality control by ArfA and RF2 bound to ribosome. Nature. 2017;541(7638):554–557.
  • Pavlova N, Kaloudas D, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene. 2019;708:38–48.
  • Gupta A, Swati D. Riboswitches in Archaea. Comb Chem High Throughput Screen. 2019;22(2):135–149.
  • Beyene SS, Ling T, Ristevski B, et al. A novel riboswitch classification based on imbalanced sequences achieved by machine learning. PLoS Comput Biol. 2020;16(7):e1007760.
  • McCown PJ, Corbino KA, Stav S, et al. Riboswitch diversity and distribution. RNA. 2017;23(7):995–1011.
  • Matyjasik MM, Hall SD, Batey RT. High affinity binding of N2-Modified guanine derivatives significantly disrupts the ligand binding pocket of the guanine riboswitch. Molecules. 2020;25(10):2295.
  • Xie P, Chen H. Mechanism of ribosome translation through mRNA secondary structures. Int J Biol Sci. 2017;13(6):712–722.
  • Sehnal D, Bittrich S, Deshpande M, et al. Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021;49(W1):W431–W7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.