1,339
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The distinct RNA-interaction modes of a small ZnF domain underlay TUT4(7) diverse action in miRNA regulation

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 770-781 | Received 30 Jul 2021, Accepted 06 Oct 2021, Published online: 01 Nov 2021

References

  • Morgan M, Much C, DiGiacomo M, et al. MRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature. 2017;548(7667):347–351.
  • Chang H, Yeo J, Kim JG, et al. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol Cell. 2018;70(1):72–82.e7.
  • Menezes MR, Balzeau J, Hagan JP. 3ʹ RNA uridylation in epitranscriptomics, gene regulation, and disease. Front Mol Biosci. 2018;5. DOI:10.3389/fmolb.2018.00061
  • Yu S, Kim VN. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol. 2020;21(9):542–556.
  • Barbieri IKouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6:303-322.
  • HallettRM, Hassell JA. E2F1 and KIAA0191 expression predicts breast cancer patient survival. BMC Res Notes. 2011;4(1). DOI:10.1186/1756-0500-4-95
  • Lim J, Ha M, Chang H, et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell. 2014;159(6):1365–1376.
  • Morgan M, Kabayama Y, Much C, et al. A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Res. 2019;29(3):221–232.
  • Thomas MP, Liu X, Whangbo J, et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3ʹ uridylated intermediates degraded by DIS3L2. Cell Rep. 2015;11(7):1079–1089.
  • Heo I, Joo C, Kim YK, et al. TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell. 2009;138(4):696–708.
  • Heo I, Ha M, Lim J, et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012;151(3):521–532.
  • Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol. 2009;16(10):1021–1025.
  • Kim B, Ha M, Loeff L, et al. TUT 7 controls the fate of precursor micro RNAs by using three different uridylation mechanisms. EMBO J. 2015;34(13):1801–1815.
  • Kim H, Kim J, Yu S, et al. A mechanism for microRNA arm switching regulated by uridylation. Mol Cell. 2020;78(6):1224–1236.e5.
  • Kim H, Kim J, Kim K, et al. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3 end modification. Nucleic Acids Res. 2019;47(5):2630–2640.
  • Thornton JE, Du P, Jing L, et al. Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Res. 2014;42(18):11777–11791.
  • Jones MR, Quinton LJ, Blahna MT, et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol. 2009;11(9):1157–1163.
  • Jones MR, Blahna MT, Kozlowski E, et al. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival. PLoS Genet. 2012;8(11):e1003105.
  • Yang A, Bofill-De Ros X, Shao TJ, et al. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol Cell. 2019;75(3):511–522.e4.
  • Gutiérrez-Vázquez C, Enright AJ, Rodríguez-Galán A, et al. 3′ Uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA. 2017;23(6):882–891.
  • Faehnle CR, Walleshauser J, Joshua-Tor L. Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis. Nat Struct Mol Biol. 2017;24(8):658–665.
  • Thornton JE, Chang HM, Piskounova E, et al. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA. 2012;18(10):1875–1885.
  • Pirouz M, Du P, Munafò M, et al. Dis3l2-mediated decay is a quality control pathway for noncoding RNAs. Cell Rep. 2016;16(7):1861–1873.
  • łabno A, Warkocki Z, Kulínski T, et al. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Res. 2016. Dec 1;44(21):10437-10453. DOI:10.1093/nar/gkw649
  • Collins KM, Oregioni A, Robertson LE, et al. Protein-RNA specificity by high-throughput principal component analysis of NMR spectra. Nucleic Acids Res. 2015;43(6):e41.
  • Loughlin FE, Gebert LFR, Towbin H, et al. Structural basis of pre-let-7 miRNA recognition by the zinc Knuckles of pluripotency factor Lin28. Nat Struct Mol Biol. 2012;19(1):84–91.
  • Yamashita S, Nagaike T, Tomita K. Crystal structure of the Lin28-interacting module of human terminal uridylyltransferase that regulates let-7 expression. Nat Commun [Internet]. 2019;10(1):1960. Available from:
  • Hollingworth D, Candel AM, Nicastro G, et al. KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Res. 2012 Aug;40(14):6873–6886.
  • Rybak A, Fuchs H, Smirnova L, et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol. 2008 Aug;10(8):882–891.
  • Lee W, Revington MJ, Arrowsmith C, et al. A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett. 1994 Aug;350(1):87–90.
  • Dagil R, Ball NJ, Ogrodowicz RW, et al. IMP1 KH1 and KH2 domains create a structural platform with unique RNA recognition and re-modelling properties. Nucleic Acids Res. 2019;47(8):4334–4348.
  • Nicastro G, Candel AM, Uhl M, et al. Mechanism of β-actin mRNA recognition by ZBP1. Cell Rep. 2017;18(5):1187–1199.
  • Afitska K, Fucikova A, Shvadchak VV, et al. Modification of C terminus provides new insights into the mechanism of α-synuclein aggregation. Biophys J. 2017 Nov;113(10):2182–2191.
  • Grzesiek S, Bax A. Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson. 1992;96(2):432–440.
  • Grzesiek S, Bax A. An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson. 1992;99(1):201–207.
  • Grzesiekt S, Bax A. Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc. 1992;114(16):6291–6293.
  • Vranken WF, Boucher W, Stevens TJ, et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Genet. 2005;59(4):687–696.
  • Kay LE, Torchia DA, Bax A. backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989;28(23):8972–8979.
  • Skinner SP, Fogh RH, Boucher W, et al. CcpNmr AnalysisAssign : a flexible platform for integrated NMR analysis. J Biomol NMR. 2016;66(2):111–124.
  • Krämer SD, Wöhrle J, Rath C, et al. Anabel: an online tool for the real-time kinetic analysis of binding events. Bioinf Biol Insights [Internet]. 2019;13:1177932218821383. Available from: https://europepmc.org/articles/PMC6328958
  • Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000 Sep;302(1):205–217.
  • Madeira F, Park YM, Lee J, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res [Internet]. 2019 Jul;47(W1):W636–W641. Available from: https://europepmc.org/articles/PMC6602479
  • Waterhouse AM, Procter JB, Martin DMA, et al. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009 May;25(9):1189–1191.