2,175
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Nsp1 of SARS-CoV-2 stimulates host translation termination

, , , , , , , , & ORCID Icon show all
Pages 804-817 | Received 31 Mar 2021, Accepted 24 Oct 2021, Published online: 18 Nov 2021

References

  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733.
  • Kim D, Lee JY, Yang JS, et al. The architecture of SARS-CoV-2 transcriptome. Cell. 2020b;181:914–921.e10.
  • Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27:325–328.
  • Zhou P, Lou YX, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
  • Yuan S, Peng L, and Park JJ, et al. Nonstructural protein 1 of SARS-CoV-2 is a potent pathogenicity factor redirecting host protein synthesis machinery toward viral RNA. Mol Cell. 2020;80:1055–1066.e6 .
  • Banerjee AK, Blanco MR, Bruce EA, et al. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. 2020;183:1325–1339.e21.
  • Schubert K, Karousis ED, and Jomaa A, et al. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol. 2020;27:959–966 .
  • Shi M, Wang L, and Fontana P, et al. SARS-CoV-2 Nsp1 suppresses host but not viral translation through a bipartite mechanism. bioRxiv. 2020. ; doi:10.1101/2020.09.18.302901 .
  • Tidu A, Janvier A, Schaeffer L, et al. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA. 2021;27:253–264.
  • Finkel Y, Gluck A, Nachshon A, et al. SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature. 2021;594:240–245.
  • Rao S, Hoskins I, Tonn T, et al. Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein. RNA. 2021;27:1025–1045.
  • Slobodin B, Sehrawat U, and Lev A, et al. Cap-independent translation and a precisely localized RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response. bioRxiv.2021. https://doi.org/10.1101/2021.08.18.456855. .
  • Thoms M, Buschauer R, Ameismeier M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 2020;369:1249–1256.
  • Xia H, Cao Z, Xie X, et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep. 2020;33(1):108234.
  • Zhang K, Miorin L, and Makio T, et al. Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Sci Adv. 2021;7(6):eabe7386.
  • Burke JM, St Clair LA, Perera R, et al. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNA. 2021;27:1318–1329.
  • Bujanic L, Shevchuk O, and Kügelgen NV, et al. The key features of SARS-CoV-2 leader and NSP1 required for viral escape of NSP1-mediated repression. bioRxiv. 2021. doi:10.1101/2021.09.13.460054;.
  • Vora SM, Fontana P, and Leger V, et al. Targeting Stem-loop 1 of the SARS-CoV-2 5ʹUTR to suppress viral translation and Nsp1 evasion. bioRxiv. 2021. doi:10.1101/2021.09.09.459641;.
  • Zhu C, Lee JY, and Woo JZ, et al. An intranasal ASO therapeutic targeting SARS-CoV-2. bioRxiv. 2021. doi:10.1101/2021.05.17.444397.
  • Lapointe CP, Grosely R, Johnson AG, et al. Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proc Natl Acad Sci. 2021;118:e2017715118.
  • Kamitani W, Huang C, Narayanan K, et al. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol. 2009;16:1134–1140.
  • Jackson RJ, Hellen CUT, and Pestova TV. Termination and post-termination events in eukaryotic translation. 2012;86: 45–93.
  • Brown A, Shao S, Murray J, et al. Structural basis for stop codon recognition in eukaryotes. Nature. 2015;524:493–496.
  • Frolova L, Le Goff X, Rasmussen HH, et al. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature. 1994;372:701–703.
  • Kryuchkova P, Grishin A, Eliseev B, et al. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res. 2013;41:4573–4586.
  • Matheisl S, Berninghausen O, Becker T, et al. Structure of a human translation termination complex. Nucleic Acids Res. 2015;43:8615–8626.
  • Song H, Mugnier P, Das AK, et al. The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 2000;100:311–321.
  • Alkalaeva EZ, Pisarev AV, Frolova LY, et al. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell. 2006;125:1125–1136.
  • Cheng Z, Saito K, Pisarev AV, et al. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev. 2009;23:1106–1118.
  • Frolova L, Le Goff X, Zhouravleva G, et al. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA. 1996;2:334–341.
  • Shao S, Murray J, Brown A, et al. Decoding mammalian ribosome-mRNA states by translational GTPase complexes. Cell. 2016;167(1229–1240.e15). DOI:10.1016/j.cell.2016.10.046
  • Taylor D, Unbehaun A, Li W, et al. Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex. Proc Natl Acad Sci. 2012;109:18413–18418.
  • Frolova LY, Tsivkovskii RY, Sivolobova GF, et al. Mutations in the highly conserved GGQ motif of class I polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. Rna. 1999;5:1014–1020.
  • Susorov D, Egri S, Korostelev AA. Termi-Luc: a versatile assay to monitor full-protein release from ribosomes. RNA. 2020;26:2044–2050.
  • Egorova T, Sokolova E, Shuvalova E, et al. Fluorescent toeprinting to study the dynamics of ribosomal complexes. Methods. 2019;162–163:54–59.
  • Kim D-K, Knapp JJ, Kuang D, et al. A comprehensive, flexible collection of SARS-CoV-2 coding regions. G3 Genes|Genomes|Genetics. 2020a;10:3399–3402.
  • Ivanov A, Mikhailova T, Eliseev B, et al. PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Res. 2016;44:7766–7776.
  • Mikhailova T, Shuvalova E, Ivanov A, et al. RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. Nucleic Acids Res. 2017;45:1307–1318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.