1,968
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

A novel role for nucleolin in splice site selection

, , ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Pages 333-352 | Received 06 Jan 2021, Accepted 10 Dec 2021, Published online: 27 Feb 2022

References

  • Kelemen O, Convertini, P, Zhang, Z, et al. Function of alternative splicing. Gene. 2013;514(1):1–30.
  • Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84(1):291–323.
  • Akerman M, Fregoso, OI, Das, S, et al. Differential connectivity of splicing activators and repressors to the human spliceosome. Genome Biol. 2015;16(1):119.
  • Papasaikas P, and Valcárcel J. The spliceosome: The ultimate RNA chaperone and sculptor. Trends Biochem Sci. 2016;41(1):33–45.
  • Fiszbein A, Kornblihtt AR. Alternative splicing switches: important players in cell differentiation. Bioessays. 2017;39(6):1600157.
  • Dvinge H. Regulation of alternative mRNA splicing: old players and new perspectives. FEBS Lett. 2018;592(17):2987–3006.
  • Singh RK, Cooper TA. Pre-mRNA splicing in disease and therapeutics. Trends Mol Med. 2012;18:472–482.
  • Irimia M, Blencowe BJ. Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol. 2012;24:323–332.
  • Chabot B, Shkreta L. Defective control of pre-messenger RNA splicing in human disease. J Cell Biol. 2016;212:13–27.
  • El Marabti E, Younis I. The cancer spliceome: Reprograming of alternative splicing in cancer. Front Mol Biosci. 2018;5:80.
  • Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–476.
  • Sheth N, Roca X, Hastings ML, et al. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 2006;34(14):3955–3967.
  • Filichkin SA, Priest, HD, Givan, SA, et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res. 2010;20(1):45–58.
  • Miriami E, Motro U, Sperling J, et al. Conservation of an open-reading frame as an element affecting 5ʹ splice site selection. J Struct Biol. 2002;140(1–3):116–122.
  • Nevo Y, Kamhi E, Jacob-Hirsch J, et al. Genome-wide activation of latent donor splice sites in stress and disease. Nucleic Acids Res. 2012;40(21):10980–10994.
  • Behm-Ansmant I, Kashima I, Rehwinkel J, et al. mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett. 2007;581(15):2845–2853.
  • Li B, Wachtel C, Miriami E, et al. Stop codons affect 5ʹ splice site selection by surveillance of splicing. Proc Natl Acad Sci USA. 2002;99(8):5277–5282.
  • Wachtel C, Li B, Sperling J, et al. Stop codon-mediated suppression of splicing is a novel nuclear scanning mechanism not affected by elements of protein synthesis and NMD. RNA. 2004;10(11):1740–1750.
  • Kamhi E, Yahalom G, Kass G, et al. AUG sequences are required to sustain nonsense-codon-mediated suppression of splicing. Nucleic Acids Res. 2006;34(12):3421–3433.
  • Kamhi E, Raitskin O, Sperling R, et al. A potential role for initiator-tRNA in pre-mRNA splicing regulation. Proc Natl Acad Sci U S A. 2010;107(25):11319–11324.
  • Miriami E, Sperling J, Sperling R. Heat shock affects 5ʹ splice site selection, cleavage and ligation of CAD pre-mRNA in hamster cells, but not its packaging in lnRNP particles. Nucleic Acids Res. 1994;22(15):3084–3091.
  • Nevo Y, Sperling J, Sperling R. Heat shock activates splicing at latent alternative 5ʹ splice sites in nematodes. Nucleus. 2015;6(3):225–235.
  • Karousis ED, Nasif S, Mühlemann O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Wiley Interdiscip Rev RNA. 2016;7(5):661–682.
  • Kurosaki T, Maquat LE. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci. 2016;129(3):461–467.
  • He F, Jacobson A. Nonsense-Mediated mRNA decay: Degradation of defective transcripts is only part of the story. Annu Rev Genet. 2015;49(1):339–366.
  • Sperling J, Sperling R. Nuclear surveillance of RNA polymerase II transcripts. RNA Biol. 2008;5(4):220–224.
  • Sperling R. Small non-coding RNA within the endogenous spliceosome and alternative splicing regulation. Biochim Biophys Acta Gene Regul Mech. 2019;1862(11–12):194406.
  • Vaz-Drago R, Pinheiro MT, Martins S, et al. Transcription-coupled RNA surveillance in human genetic diseases caused by splice site mutations. Hum Mol Genet. 2015;24(10):2784–2795.
  • Mühlemann O, Mock-Casagrande CS, Wang J, et al. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol Cell. 2001;8(1):33–44.
  • Aoufouchi S, Yelamos J, Milstein C. Nonsense mutations inhibit RNA splicing in a cell-free system: recognition of mutant codon is independent of protein synthesis. Cell. 1996;85(3):415–422.
  • Gersappe A, Burger L, and Pintel DJ. A premature termination codon in either exon of minute virus of mice P4 promoter-generated pre-mRNA can inhibit nuclear splicing of the intervening intron in an open reading frame-dependent manner. J Biol Chem. 1999;274(32):22452–22458.
  • de Turris V, Nicholson P, Orozco RZ, et al. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA. 2011;17(12):2094–2107.
  • Shefer K, Sperling J, Sperling R. The supraspliceosome-a multi-task-machine for regulated pre-mRNA processing in the cell nucleus. Comput Struct Biotechnol J. 2014;11(19):113–122.
  • Kotzer-Nevo H, de Lima Alves F, Rappsilber J, et al. Supraspliceosomes at defined functional states portray the pre-assembled nature of the pre-mRNA processing machine in the cell nucleus. Int J Mol Sci. 2014;15(7):11637–11664.
  • Berger CM, Gaume X, Bouvet P. The roles of Nucleolin subcellular location in cancer. Biochemie. 2015;113:78–85.
  • Abdelmohsen K, Gorospe M. RNA-binding protein nucleolin in disease. RNA Biol. 2012;9(6):799–808.
  • Ginisty H, Sicard H, Roger B, et al. Structure and functions of nucleolin. J Cell Sci. 1999;112(Pt 6):761–772.
  • Spann P, Feinerman M, and Sperling J, et al. Isolation and visualization of large compact ribonucleoprotein particles of specific nuclear RNAs. Proc Natl Acad Sci USA. 1989;86(2):466–470.
  • Sperling R. The nuts and bolts of the endogenous spliceosome. WIREs RNA. 2017;8(1):e1377.
  • Yitzhaki S, Miriami E, and Sperling R, et al. Phosphorylated Ser/Arg-rich proteins: limiting factors in the assembly of 200S large nuclear ribonucleoprotein particles. Proc Natl Acad Sci U S A. 1996;93(17):8830–8835.
  • Hogg JR, Collins K. RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA. 2007;13(6):868–880.
  • Kotzer-Nevo H. Supraspliceosome - a dynamic pre-assembled machine throughout the splicing stages The Hebrew University of Jerusalem. 2013; Doctoral dissertation, 106 p.
  • Azubel M, Habib N, and Sperling R, et al. Native spliceosomes assemble with pre-mRNA to form supraspliceosomes. J Mol Biol. 2006;356(4):955–966.
  • Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11(2–3):377–394.
  • Bicknell K, Brooks G, Kaiser P, et al. Nucleolin is regulated both at the level of transcription and translation. Biochem Biophys Res Commun. 2005;332(3):817–822.
  • Caizergues-Ferrer M, Mariottini P, Curie C, et al. Nucleolin from Xenopus laevis: cDNA cloning and expression during development. Genes Dev. 1989;3(3):324–333.
  • Raitskin O, Angenitzki M, Sperling J, et al. Large nuclear RNP particles—the nuclear pre-mRNA processing machine. Journal of Structural Biology. 2002;140(1–3):123–130.
  • Abdelmohsen K, Gorospe M, . RNA-binding protein nucleolin in disease. RNA Biol. 2012;9(6):799–808.
  • Gregorio AC, Lacerda M, Figueiredo P, et al. Meeting the needs of breast cancer: a nucleolin’s perspective. Crit Rev Oncol Hematol. 2018;125:89–101.
  • Ugrinova I, Petrova M, Chalabi-Dchar M, et al. Multifaceted nucleolin protein and its molecular partners in oncogenesis. Adv Protein Chem Struct Biol. 2018;111:133–164.
  • Jia W, Yao Z, Zhao J, et al. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 2017;186:1–10.
  • Marchand V, Santerre M, Aigueperse C, et al. Identification of protein partners of the human immunodeficiency virus 1 tat / rev exon 3 leads to the discovery of a new HIV-1 splicing regulator, protein hnRNP K. RNA Biol. 2011;8(2):325–342.
  • Soeno Y, Taya Y, Stasyk T, et al. Identification of novel ribonucleo-protein complexes from the brain-specific snoRNA MBII-52. RNA. 2010;16(7):1293–1300.
  • Das S, Cong R, Shandilya J, et al. Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors. FEBS Lett. 2013;587(5):417–424.
  • Ugrinova I, Chalabi-Dchar M, Monier K, et al. Nucleolin interacts and co-localizes with components of pre-catalytic spliceosome complexes. Sci. 2019;1(2):33.
  • Salvetti A, Couté Y, Epstein A, et al. Nuclear functions of nucleolin through global proteomics and interactomic approaches. J Proteome Res. 2016;15(5):1659–1669.
  • Chen Y-IG, Moore RE, Ge HY, et al. Proteomic analysis of in vivo-assembled pre-mRNA splicing complexes expands the catalog of participating factors. Nucleic Acids Res. 2007;35(12):3928–3944.
  • Ugrinova I, Monier K, and Ivaldi C, et al. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication. BMC Mol Biol. 2007;8(1):66.
  • Xu Z, Joshi N, Agarwal A, et al. Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest. J Neurooncol. 2012;108(1):59–67.
  • Lv S, Dai C, Liu Y, et al. Cell surface protein C23 affects EGF-EGFR induced activation of ERK and PI3K-AKT pathways. J Mol Neurosci. 2015;55:519–524.
  • Xu JY, Lu S, Xu, XY, et al. Knocking down nucleolin expression enhances the radiosensitivity of non-small cell lung cancer by influencing DNA-PKcs activity. Asian Pac J Cancer Prev. 2015;16:3301–3306.
  • Kawamura K, Qi F, Meng Q, et al. Nucleolar protein nucleolin functions in replication stress-induced DNA damage responses. J Radiat Res. 2019;60:281–288.
  • Sen Gupta A, Joshi G, Pawar S, et al. Nucleolin modulates compartmentalization and dynamics of histone 2B-ECFP in the nucleolus. Nucleus. 2018;9:350–367.
  • Liang P, Jiang B, Lv C, et al. The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs. Biochim Biophys Acta. 2013;1830:4500–4512.
  • Storck S, Thiry M, Bouvet P. Conditional knockout of nucleolin in DT40 cells reveals the functional redundancy of its RNA-binding domains. Biol Cell. 2009;101:153–167.
  • Rickards B, Flint SJ, Cole MD, et al. Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 2007;27:937–948.
  • Kumar S, Gomez EC, Chalabi-Dchar M, et al. Integrated analysis of mRNA and miRNA expression in HeLa cells expressing low levels of Nucleolin. Sci Rep. 2017;7:9017.
  • Ehrmann I, Crichton JH, Gazzara MR, et al. An ancient germ cell-specific RNA-binding protein protects the germline from cryptic splice site poisoning. Elife. 2019;8:e39304.
  • Sperling J, Sperling R. Structural studies of the endogenous spliceosome - The supraspliceosome. Methods. 2017;125:70–83.
  • Moon KH, Zhao X, and Yu YT. Pre-mRNA splicing in the nuclei of Xenopus oocytes Methods Mol Biol. 2006;322:149–163.
  • Mereau A, Le Sommer C, Lerivray H, et al. Xenopus as a model to study alternative splicing in vivo. Biol Cell. 2007;99:55–65.
  • Pestova TV, Kolupaeva VG, Lomakin IB, et al. Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci USA. 2001;98:7029–7036.
  • Ben-Chaim Y, Tour O, Dascal N, et al. The M2 muscarinic G-protein-coupled receptor is voltage-sensitive. J Biol Chem. 2003;278:22482–22491.
  • Ohana L, Barchad O, Parnas I, et al. The metabotropic glutamate G-protein-coupled receptors mGluR3 and mGluR1a are voltage-sensitive. J Biol Chem. 2006;281:24204–24215.
  • Birkenmeier EH, Brown DD, Jordan E. A nuclear extract of Xenopus laevis oocytes that accurately transcribes 5S RNA genes. Cell. 1978;15:1077–1086.
  • Lorson CL, Hahnen E, Androphy EJ, et al. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999;96:6307–6311.
  • Aharon-Hefetz N, Frumkin I, Mayshar Y, et al. Manipulation of the human tRNA pool reveals distinct tRNA sets that act in cellular proliferation or cell cycle arrest. Elife. 2020;9:e58461.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
  • Hartley SW, Mullikin JC. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics. 2015;16:224.
  • I. Love M, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–15550.
  • Liberzon A, Birger C, Thorvaldsdóttir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–425.
  • Azubel M, Wolf SG, Sperling J, et al. Three-dimensional structure of the native spliceosome by cryo-electron microscopy. Mol Cell. 2004;15:833–839.
  • Cohen-Krausz S, Sperling R, Sperling J. Exploring the architecture of the intact supraspliceosome using electron microscopy. J Mol Biol. 2007;368:319–327.
  • Müller S, Wolpensinger B, Angenitzki M, et al. A supraspliceosome model for large nuclear ribonucleoprotein particles based on mass determinations by scanning transmission electron microscopy. J Mol Biol. 1998;283:383–394.