5,382
Views
10
CrossRef citations to date
0
Altmetric
Review

ncRNAs and polyphenols: new therapeutic strategies for hypertension

, , & ORCID Icon
Pages 575-587 | Received 25 Dec 2021, Accepted 11 Apr 2022, Published online: 19 Apr 2022

References

  • Wulandari C. The effect of flavonoid consumption on blood pressure: a systematic review. Open Access Indonesian Journal of Medical Reviews. 2022;2(1):186–192.
  • Derhaschnig U, Testori C, Riedmueller E, et al. Hypertensive emergencies are associated with elevated markers of inflammation, coagulation, platelet activation and fibrinolysis. J Hum Hypertens. 2013;27(6):368–373.
  • Lugo-Gavidia LM, Burger D, Matthews VB, et al. Role of microparticles in cardiovascular disease: implications for endothelial dysfunction, thrombosis, and inflammation. Hypertension. 2021;77(6):1825–1844.
  • Yamagata K. prevention of vascular endothelial dysfunction by polyphenols: role in cardiovascular disease prevention. In: Phytopharmaceuticals: potential therapeutic applications. Wiley Online Library; 2021. p. 223–246. doi:10.1002/9781119682059.ch11
  • Tanghe A, Heyman E, Vanden Wyngaert K, et al. Evaluation of blood pressure lowering effects of cocoa flavanols in diabetes mellitus: a systematic review and meta-analysis. J Funct Foods. 2021;79:104399.
  • Hooper L, Kay C, Abdelhamid A, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95(3):740–751.
  • Lapuente M, Estruch R, Shahbaz M, et al. Relation of fruits and vegetables with major cardiometabolic risk factors, markers of oxidation, and inflammation. Nutrients. 2019;11(10):2381.
  • Andriantsitohaina R, Auger C, Chataigneau T, et al. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br J Nutr. 2012;108(9):1532–1549.
  • Bátkai S, Thum T. MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep. 2012;14(1):79–87.
  • Salabi F, Jafari H, Navidpour S, et al. Systematic and computational identification of androctonus crassicauda long non-coding RNAs. Sci Rep. 2021;11(1):1–14.
  • Majidinia M, Karimian A, Alemi F, et al. Targeting miRNAs by polyphenols: novel therapeutic strategy for aging. Biochem Pharmacol. 2020;173:113688.
  • Miranda A, Steluti J, Fisberg RM, et al. Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: a population-based study. Br J Nutr. 2016;115(6):1061–1070.
  • Singla RK, Dubey AK, Garg A, et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int. 2019;102(5):1397–1400.
  • Bellavia D, Caradonna F, Dimarco E, et al. Non-flavonoid polyphenols in osteoporosis: preclinical evidence. Trends Endocrinol Metab. 2021;32(7):515–529.
  • Habauzit V, Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chronic Dis. 2012;3(2):87–106.
  • Hügel HM, Jackson N, May B, et al. Polyphenol protection and treatment of hypertension. Phytomedicine. 2016;23(2):220–231.
  • Pehlivan FE. Diet-Epigenome interactions: epi-drugs modulating the epigenetic machinery during cancer prevention. In: Epigenetics to optogenetics-a new paradigm in the study of biology. IntechOpen; 2021. p. 18. doi:10.5772/intechopen.95374.
  • Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231–1246.
  • Yi J, Li S, Wang C, et al. Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer. Biomed Pharmacother. 2019;113:108703.
  • Hemati N, Asis M, Moradi S, et al. Effects of genistein on blood pressure: a systematic review and meta-analysis. Food Res Int. 2020;128:108764.
  • Mohammadi M, Ramezani-Jolfaie N, Lorzadeh E, et al. Hesperidin, a major flavonoid in Orange juice, might not affect lipid profile and blood pressure: a systematic review and meta‐analysis of randomized controlled clinical trials. Phytother Res. 2019;33(3):534–545.
  • Liang Y, Wang J, Gao H, et al. Beneficial effects of grape seed proanthocyanidin extract on arterial remodeling in spontaneously hypertensive rats via protecting against oxidative stress. Mol Med Rep. 2016;14(4):3711–3718.
  • Garcia C, Blesso CN. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic Biol Med. 2021;172:152–166.
  • Dos Baiao DS, da Silva DV, Paschoalin VM. Beetroot, a remarkable vegetable: its nitrate and phytochemical contents can be adjusted in novel formulations to benefit health and support cardiovascular disease therapies. Antioxidants. 2020;9(10):960.
  • Najjar RS, Feresin RG. Protective role of polyphenols in heart failure: molecular targets and cellular mechanisms underlying their therapeutic potential. Int J Mol Sci. 2021;22(4):1668.
  • Tangney CC, Rasmussen HE. Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep. 2013;15(5):1–10.
  • Markovics A, Biró A, Kun-Nemes A, et al. Effect of anthocyanin-rich extract of sour cherry for hyperglycemia-induced inflammatory response and impaired endothelium-dependent vasodilation. Nutrients. 2020;12(11):3373.
  • Sha W, Liu M, Sun D, et al. Resveratrol ameliorated endothelial injury of thoracic aorta in diabetic mice and Gly‐LDL‐induced HUVECs through inhibiting TLR4/HIF‐1α. J Cell Mol Med. 2021;25(13):6258–6270.
  • Chen C-Y, Jin, X., Yi, L., et al. Inhibitory effect of delphinidin on monocyte–endothelial cell adhesion induced by oxidized low-density lipoprotein via ROS/p38MAPK/NF-κB pathway. Cell Biochem Biophys. 2011;61(2):337–348.
  • Poloni DM, Dangles O, Vinson JA. Binding of plant polyphenols to serum albumin and LDL: healthy implications for heart disease. J Agric Food Chem. 2019;67(33):9139–9147.
  • Tung W-C, Rizzo B, Dabbagh Y, et al. Polyphenols bind to low density lipoprotein at biologically relevant concentrations that are protective for heart disease. Arch Biochem Biophys. 2020;694:108589.
  • Monsalve B, Concha-meyer A, Palomo I, et al. Mechanisms of endothelial protection by natural bioactive compounds from fruit and vegetables. Anais da Academia Brasileira de Ciências. 2017;89(1 suppl):615–633.
  • Steven S, Frenis, K., Oelze, M., et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxidative medicine and cellular longevity. 2019.
  • Yamagata K. Polyphenols regulate endothelial functions and reduce the risk of cardiovascular disease. Curr Pharm Des. 2019;25(22):2443–2458.
  • Mozos I, Flangea C, Vlad DC, et al. Effects of anthocyanins on vascular health. Biomolecules. 2021;11(6):811.
  • Silva H, Lopes NMF. Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review.Frontiers in physiology. 2020. p. 20.
  • Tan CS, Loh YC, Tew WY, et al. Vasorelaxant effect of 3,5,4′-trihydroxy-trans-stilbene (resveratrol) and its underlying mechanism. Inflammopharmacology. 2020;28(4):869–875.
  • Mirhadi E, Roufogalis BD, Banach M, et al. Resveratrol: mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res. 2021;163:105287.
  • Fragopoulou E, Argyrou C, Detopoulou M, et al. The effect of moderate wine consumption on cytokine secretion by peripheral blood mononuclear cells: a randomized clinical study in coronary heart disease patients. Cytokine. 2021;146:155629.
  • Liu X, Martin DA, Valdez JC, et al. Aronia berry polyphenols have matrix-dependent effects on the gut microbiota. Food Chem. 2021;359:129831.
  • Bian Y, Liu P, Zhong J, et al. Quercetin attenuates adhesion molecule expression in intestinal microvascular endothelial cells by modulating multiple pathways. Dig Dis Sci. 2018;63(12):3297–3304.
  • Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci. 2013;14(8):16010–16039.
  • Fernandes JC, Acuña S, Aoki J, et al. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA. 2019;5(1):17.
  • Todd LA, Bui-Marinos MP, Katzenback BA. Post-transcriptional regulation of frog innate immunity: discovery of frog microRNAs associated with antiviral responses and ranavirus infection using a Xenopus laevis skin epithelial-like cell line. Facets. 2021;6(1):2058–2083.
  • Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51(4):759–774.
  • Eiring AM, Harb JG, Neviani P, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–665.
  • Roberts TC. The microRNA biology of the mammalian nucleus. Mol Ther Nucleic Acids. 2014;3:e188.
  • Mayr B, Niebauer J, Breitenbach-Koller H. Circulating miRNAs as predictors for morbidity and mortality in coronary artery disease. Mol Biol Rep. 2019;46(5):5661–5665.
  • Zhou S-S, Jin J-P, Wang J-Q, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39(7):1073–1084.
  • Shirazi-Tehrani E, Firouzabadi N, Tamaddon G, et al. Carvedilol alters circulating MiR-1 and MiR-214 in heart failure. Pharmgenomics Pers Med. 2020;13:375.
  • Kalayinia S, Arjmand F, Maleki M, et al. MicroRNAs: roles in cardiovascular development and disease. Cardiovasc Pathol. 2021;50:107296.
  • Lu P, Ding F, Xiang YK, et al. Noncoding RNAs in cardiac hypertrophy and heart failure. Cells. 2022;11(5):777.
  • Andersen GB, Knudsen A, Hager H, et al. mi RNA profiling identifies deregulated mi RNA s associated with osteosarcoma development and time to metastasis in two large cohorts. Mol Oncol. 2018;12(1):114–131.
  • Bavishi C, Bangalore S, Messerli FH. Outcomes of intensive blood pressure lowering in older hypertensive patients. J Am Coll Cardiol. 2017;69(5):486–493.
  • Wu G, Jose PA, Zeng C. Noncoding RNAs in the regulatory network of hypertension. Hypertension. 2018;72(5):1047–1059.
  • Bahramali E, Firouzabadi N, Rajabi M, et al. Association of renin–angiotensin–aldosterone system gene polymorphisms with left ventricular hypertrophy in patients with heart failure with preserved ejection fraction: a case–control study. Ann Clin Exp Hypertens. 2017;39(4):371–376.
  • Firouzabadi N, Tajik N, Bahramali E, et al. Gender specificity of a genetic variant of angiotensin-converting enzyme and risk of coronary artery disease. Mol Biol Rep. 2013;40(8):4959–4965.
  • Bahramali E, Rajabi M, Jamshidi J, et al. Association of ACE gene D polymorphism with left ventricular hypertrophy in patients with diastolic heart failure: a case–control study. BMJ open. 2016;6(2):e010282.
  • Murakami K. Non-coding RNAs and hypertension–unveiling unexpected mechanisms of hypertension by the dark matter of the genome. Curr Hypertens Rev. 2015;11(2):80–90.
  • Marques F, Booth S, Charchar F. The emerging role of non-coding RNA in essential hypertension and blood pressure regulation. J Hum Hypertens. 2015;29(8):459–467.
  • Patel RS, Masi S, Taddei S. Understanding the role of genetics in hypertension. Eur Heart J. 2017;38(29):2309–2312.
  • Liyanage KIP, Ganegoda GU. Therapeutic Approaches and Role of ncRNAs in Cardiovascular Disorders and Insulin Resistance. BioMed Research International. 2017. p. 10.
  • Jusic A, Devaux Y, Action E-C-C. Noncoding RNAs in hypertension. Hypertension. 2019;74(3):477–492.
  • Sequeira-Lopez MLS, Weatherford ET, Borges GR, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21(3):460–467.
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–379.
  • Ketting RF, Cochella L. Concepts and functions of small RNA pathways in C. elegans. Current topics in developmental biology. 2021. doi:10.1016/bs.ctdb.2020.08.002.
  • Badawy HK, Abo-Elmatty DM, Mesbah NM. Differential expression of microRNA let-7e and 296-5p in plasma of Egyptian patients with essential hypertension. Heliyon. 2018;4(11):e00969.
  • Li S, Zhu J, Zhang W, et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124(2):175–184.
  • Wei L-H, Huang X-R, Zhang Y, et al. Smad7 inhibits angiotensin II-induced hypertensive cardiac remodelling. Cardiovasc Res. 2013;99(4):665–673.
  • Nemecz M, Alexandru N, Tanko G, et al. Role of microRNA in endothelial dysfunction and hypertension. Curr Hypertens Rep. 2016;18(12):87.
  • Zhuo Y, Zeng Q, Zhang P, et al. Functional polymorphism of lncRNA MALAT1 contributes to pulmonary arterial hypertension susceptibility in Chinese people. Clin Chem Lab Med. 2017;55(1):38–46.
  • Shi L, Tian C, Sun L, et al. The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem Biophys Res Commun. 2018;501(3):688–695.
  • Jin Q, Zhao, Z., Zhao, Q., et al. Long noncoding RNAs: emerging roles in pulmonary hypertension. In: Heart failure reviews. 2019. p. 795–815.
  • Sekar D, Nallaswamy D, Lakshmanan G. Decoding the functional role of long noncoding RNAs (lncRNAs) in hypertension progression. In: Hypertension research. 2020. p. 724–725.
  • Jiang X, Ning Q. Long noncoding RNAs as novel players in the pathogenesis of hypertension In: Hypertension Research. SpringerNature; 2020. p. 597–608.
  • Wu Y-X, Zhang S-H, Cui J, et al. Long noncoding RNA XR007793 regulates proliferation and migration of vascular smooth muscle cell via suppressing miR-23b. Med Sci Monit. 2018;24:5895.
  • Jin L, Lin, X., Yang, L., et al. AK098656, a novel vascular smooth muscle cell–dominant long noncoding RNA, promotes hypertension. Hypertension. 2018;71(2):262–272.
  • Hou J, Wang L, Wu Q, et al. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p. Stem Cell Res Ther. 2018;9(1):1–12.
  • Wang Y-N-Z, Shan K, Yao M-D, et al. Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension. 2016;68(3):736–748.
  • Rudra A, Arvind I, Mehra R. Polyphenols: types, sources and therapeutic applications. Int J Home Sci. 2021;7(3):69–75
  • Song F-L, Gan R-Y, Zhang Y, et al. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int J Mol Sci. 2010;11(6):2362–2372.
  • Ra J-E, Woo S-Y, Jin H, et al. Evaluation of antihypertensive polyphenols of barley (Hordeum vulgare L.) seedlings via their effects on angiotensin-converting enzyme (ACE) inhibition. Appl Biol Chem. 2020;63(1):1–9.
  • Chen Y-P, Sivalingam K, Shibu MA, et al. Protective effect of Fisetin against angiotensin II-induced apoptosis by activation of IGF-IR-PI3K-Akt signaling in H9c2 cells and spontaneous hypertension rats. Phytomedicine. 2019;57:1–8.
  • Polyphenols: mechanisms of Action in Human Health and Disease
  • Boo YC. Can plant phenolic compounds protect the skin from airborne particulate matter? Antioxidants. 2019;8(9):379.
  • Gerhauser C. Epigenetics, Plant (Poly) phenolics, and Cancer Prevention. In: Recent advances in polyphenol research first 4. John Wiley & Sons; 2014. p. 143–207.
  • Milenkovic D, Jude B, Morand C. miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med. 2013;64:40–51.
  • Milenkovic D, Deval C, Gouranton E, et al. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols. PloS one. 2012;7(1):e29837.
  • Han X, Wang C, Li Y, et al. miR-29b in regulating blood pressure and cardiac function in the rat model of hypertension. Exp Ther Med. 2019;17(5):3361–3366.
  • Tsai M-J, Chang W-A, Liao S-H, et al. The effects of Epigallocatechin Gallate (EGCG) on pulmonary fibroblasts of Idiopathic Pulmonary Fibrosis (IPF)—A next-generation sequencing and bioinformatic approach. Int J Mol Sci. 2019;20(8):1958.
  • Ren D, Li F, Gao A, et al. Hypoxia-induced apoptosis of cardiomyocytes is restricted by ginkgolide B-downregulated microRNA-29. Cell Cycle. 2020;19(10):1067–1076.
  • Tomé-Carneiro J, Larrosa M, Yáñez-Gascón MJ, et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res. 2013;72:69–82.
  • Ramanujam D, Schön AP, Beck C, et al. MicroRNA-21–dependent macrophage-to-fibroblast signaling determines the cardiac response to pressure overload. Circulation. 2021;143(15):1513–1525.
  • Abd-Aziz N, Kamaruzman NI, Poh CL. Development of MicroRNAs as potential therapeutics against cancer. J Oncol. 2020;2020.
  • Liu Y-Y, Zhang WY, Wang CG, et al. Resveratrol prevented experimental pulmonary vascular remodeling via miR-638 regulating NR4A3/cyclin D1 pathway. Microvasc Res. 2020;130 103988.
  • Qian B-J, Tian -C-C, Ling X-H, et al. miRNA-150-5p associate with antihypertensive effect of epigallocatechin-3-gallate revealed by aorta miRNome analysis of spontaneously hypertensive rat. Life Sci. 2018;203:193–202.
  • Rajabi S, Najafipour H, Jafarinejad Farsangi S, et al. Perillyle alcohol and Quercetin ameliorate monocrotaline-induced pulmonary artery hypertension in rats through PARP1-mediated miR-204 down-regulation and its downstream pathway. BMC Complementary Medicine and Therapies. 2020;20(1):1–12.
  • Kawai Y, Nishikawa T, Shiba Y, et al. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008;283(14):9424–9434.
  • Solich J, Kuśmider M, Faron-Górecka A, et al. Serum level of miR-1 and miR-155 as potential biomarkers of stress-resilience of NET-KO and SWR/J mice. Cells. 2020;9(4):917.
  • Bladé C, Baselga-Escudero L, Salvadó MJ, et al. mi RNA s, polyphenols, and chronic disease. Mol Nutr Food Res. 2013;57(1):58–70.
  • Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem. 2011;22(3):293–299.
  • Pinkney HR, Wright BM, Diermeier SD. The lncRNA toolkit: databases and in silico tools for lncRNA analysis. Noncoding RNA. 2020;6(4):49.
  • Zhang X, Yang X, Lin Y, et al. Anti-hypertensive effect of Lycium barbarum L. with down-regulated expression of renal endothelial lncRNA sONE in a rat model of salt-sensitive hypertension. Int J Clin Exp Pathol. 2015;8(6):6981.
  • Zhu A, Chu L, Ma Q, et al. Long non-coding RNA H19 down-regulates miR-181a to facilitate endothelial angiogenic function. Artif Cells Nanomed Biotechnol. 2019;47(1):2698–2705.
  • Lin K-H, Shibu MA, Peramaiyan R, et al. Bioactive flavone fisetin attenuates hypertension associated cardiac hypertrophy in H9c2 cells and in spontaneously hypertension rats. J Funct Foods. 2019;52:212–218.
  • Pons Z, Margalef M, Bravo FI, et al. Grape seed flavanols decrease blood pressure via Sirt-1 and confer a vasoprotective pattern in rats. J Funct Foods. 2016;24:164–172.
  • Liu K, YING Z, QI X, et al. MicroRNA-1 regulates the proliferation of vascular smooth muscle cells by targeting insulin-like growth factor 1. Int J Mol Med. 2015;36(3):817–824.
  • Zhang W-F, Zhu, T. T., Xiong, Y. W., et al. Negative feedback regulation between microRNA let-7g and LOX-1 mediated hypoxia-induced PASMCs proliferation. Biochem Biophys Res Commun. 2017;488(4):655–663.
  • Zhang B, Yao, Y., Sun, Q. F., et al. Circulating mircoRNA-21 as a predictor for vascular restenosis after interventional therapy in patients with lower extremity arterial occlusive disease. Biosci Rep. 2017;37 (2):1–10.
  • Carr G, Barrese V, Stott JB, et al. MicroRNA-153 targeting of KCNQ4 contributes to vascular dysfunction in hypertension. Cardiovasc Res. 2016;112(2):581–589.
  • Liu Y, Liu G, Zhang H, et al. MiRNA-199a-5p influences pulmonary artery hypertension via downregulating Smad3. Biochem Biophys Res Commun. 2016;473(4):859–866.
  • Yang F, Li H, Du Y, et al. Downregulation of microRNA‑34b is responsible for the elevation of blood pressure in spontaneously hypertensive rats. Mol Med Rep. 2017;15(3):1031–1036.
  • Huber LC, Ulrich, S., Leuenberger, C., et al. Featured article: microRNA-125a in pulmonary hypertension: regulator of a proliferative phenotype of endothelial cells. Exp Biol Med. 2015;240(12):1580–1589.
  • Kang B-Y, Park KK, Kleinhenz JM, et al. Peroxisome proliferator–activated receptor γ and microRNA 98 in hypoxia-induced endothelin-1 signaling. Am J Respir Cell Mol Biol. 2016;54(1):136–146.
  • Jin Y, Pang T, Nelin LD, et al. MKP‐1 is a target of miR‐210 and mediate the negative regulation of miR‐210 inhibitor on hypoxic hPASMC proliferation. Cell Biol Int. 2015;39(1):113–120.
  • Xing Y, Zheng X, Li G, et al. MicroRNA-30c contributes to the development of hypoxia pulmonary hypertension by inhibiting platelet-derived growth factor receptor β expression. Int J Biochem Cell Biol. 2015;64:155–166.
  • Gopalakrishnan K, Kumarasamy S, Mell B, et al. Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease. Hypertension. 2015;65(1):200–210.
  • Michalik KM, You, X., Manavski, Y., et al. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014;114(9):1389–1397.
  • Bayoglu B, Yuksel H, Cakmak HA, et al. Polymorphisms in the long non-coding RNA CDKN2B-AS1 may contribute to higher systolic blood pressure levels in hypertensive patients. Clin Biochem. 2016;49(10–11):821–827.
  • Su H, Xu X, Yan C, et al. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT 1 R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension. Respir Res. 2018;19(1):254.