1,279
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Global profiling and annotation of templated isomiRs dynamics across Caenorhabditis elegans development

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 928-942 | Received 13 May 2022, Accepted 05 Jul 2022, Published online: 18 Jul 2022

References

  • Bartel DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51.
  • Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37.
  • Stavast CJ, Erkeland SJ. The non-canonical aspects of microRNAs: many roads to gene regulation. Cells. 2019;8(11):1465.
  • Westholm JO, Lai EC. Mirtrons: microRNA biogenesis via splicing. Biochimie. 2011;93(11):1897–1904.
  • Cheloufi S, Dos Santos CO, Chong MM, et al. A dicer-independent miRNA biogenesis pathway that requires ago catalysis. Nature. 2010 Jun 3;465(7298):584–589.
  • Cifuentes D, Xue H, Taylor DW, et al. A novel miRNA processing pathway independent of Dicer requires argonaute2 catalytic activity. Science. 2010 Jun 25;328(5986):1694–1698.
  • Yang JS, Maurin T, Robine N, et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15163–15168.
  • Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–1414.
  • Neilsen CT, Goodall GJ, Bracken CP. IsomiRs - the overlooked repertoire in the dynamic microRNAome. Trends Genet. 2012;28(11):544–549.
  • Reese TA, Xia J, Johnson LS, et al. Identification of novel microRNA-like molecules generated from herpesvirus and host tRNA transcripts. J Virol. 2010;84(19):10344–10353.
  • Sdassi N, Silveri L, Laubier J, et al. Identification and characterization of new miRNAs cloned from normal mouse mammary gland. BMC Genomics. 2009;10(1):149.
  • Lee LW, Zhang S, Etheridge A, et al. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA. 2010;16(11):2170–2180.
  • Patil AH. Halushka MK. miRge3.0: a comprehensive microRNA and tRF sequencing analysis pipeline. NAR Genomics Bioinforma. 2021; 3. DOI:10.1093/nargab/lqab068.
  • Urgese G, Paciello G, Acquaviva A, et al. IsomiR-SEA: an RNA-Seq analysis tool for miRNAs/isomiRs expression level profiling and miRNA-mRNA interaction sites evaluation. BMC Bioinformatics. 2016;17(1):148.
  • Wu CW, Evans JM, Huang S, et al. A comprehensive approach to sequence-oriented isomiR annotation (CASMIR): demonstration with IsomiR profiling in colorectal neoplasia. BMC Genomics. 2018;19(1):401.
  • Bofill-De Ros X, Luke B, Guthridge R, et al. Tumor IsomiR Encyclopedia (TIE): a pan-cancer database of miRNA isoforms. Ponty Y, ed. Bioinformatics. 2021;37(18):3023–3025. 18.
  • Guo L, Yang Q, Lu J, et al. A comprehensive survey of miRNA repertoire and 3′ addition events in the placentas of patients with pre-eclampsia from high-throughput sequencing. PLoS One. 2011;6(6):e21072.
  • Burroughs AM, Ando Y, and de Hoon MJL, et al. A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res. 2010;20(10):1398–410. DOI:10.1101/gr.106054.110.
  • Cloonan N, Wani S, Xu Q, et al. MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol. 2011;12(12):R126.
  • Haseeb A, Makki MS, Khan NM, et al. Deep sequencing and analyses of miRNAs, isomiRs and miRNA induced silencing complex (miRISC)-associated miRNome in primary human chondrocytes. Sci Rep. 2017;7(1):15178.
  • Londin E, Loher P, Telonis AG, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci. 2015;112(10):E1106–E1115.
  • Tomasello L, Distefano R, Nigita G, et al. The microRNA family gets wider: the isomiRs classification and role. Front Cell Dev Biol. 2021;9. DOI:10.3389/fcell.2021.668648
  • Starega-Roslan J, Witkos TM, Galka-Marciniak P, et al. Sequence features of Drosha and Dicer cleavage sites affect the complexity of IsomiRs. Int J Mol Sci. 2015;16(4):8110–8127.
  • Wyman SK, Knouf EC, Parkin RK, et al. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 2011;21(9):1450–1461.
  • Gong J, Tong Y, Zhang HM, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33(1):254–263.
  • Newman MA, Mani V, Hammond SM. Deep sequencing of microRNA precursors reveals extensive 3′ end modification. RNA. 2011;17(10):1795–1803.
  • Boele J, Persson H, Shin JW, et al. PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proc Natl Acad Sci U S A. 2014;111(31):11467–11472.
  • Katoh T, Hojo H, Suzuki T. Destabilization of microRNAs in human cells by 3' deadenylation mediated by PARN and CUGBP1. Nucleic Acids Res. 2015;43(15):7521–34. DOI:10.1093/nar/gkv669.
  • Marcinowski L, Tanguy M, Krmpotic A, et al. Degradation of cellular miR-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 2012;8(2):e1002510.
  • Yamane D, Selitsky SR, Shimakami T, et al. Differential hepatitis C virus RNA target site selection and host factor activities of naturally occurring miR-122 3 variants. Nucleic Acids Res. 2017;45(8):4743–4755.
  • Yu F, Pillman KA, Neilsen CT, et al. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res. 2017;45(19):11371–11385.
  • Tan GC, Chan E, Molnar A, et al. 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Res. 2014;42(14):9424–9435.
  • Lewis BP, hung SI, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–798.
  • Manzano M, Forte E, Raja AN, et al. Divergent target recognition by coexpressed 5′-isomiRs of miR-142-3p and selective viral mimicry. RNA. 2015;21(9):1606–1620.
  • Salem O, Erdem N, Jung J, et al. The highly expressed 5′isomiR of hsa-miR-140-3p contributes to the tumor-suppressive effects of miR-140 by reducing breast cancer proliferation and migration. BMC Genomics. 2016;17(1):566.
  • Karali M, Persico M, Mutarelli M, et al. High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs. Nucleic Acids Res. 2016;44(4):1525–1540.
  • van der Kwast Rvct, Woudenberg T, Quax PHA, et al. MicroRNA-411 and its 5′-isomir have distinct targets and functions and are differentially regulated in the vasculature under ischemia. Mol Ther. 2020;28(1):157–170. Published online 2019.
  • Fernandez-Valverde SL, Taft RJ, Mattick JS. Dynamic isomiR regulation in drosophila development. RNA. 2010;16(10):1881–1888.
  • Telonis AG, Magee R, Loher P, et al. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res. 2017;45(6):2973–2985.
  • Smith CM, Hutvagner G. A comparative analysis of single cell small RNA sequencing data reveals heterogeneous isomiR expression and regulation. Sci Rep. 2022;12(1). DOI:10.1038/S41598-022-06876-3
  • Brosnan CA, Palmer AJ, Zuryn S. Cell-type-specific profiling of loaded miRNAs from Caenorhabditis elegans reveals spatial and temporal flexibility in argonaute loading. Nat Commun. 2021;12(1):2194.
  • Kim H, Kim J, Yu S, et al. A mechanism for microRNA arm switching regulated by uridylation. Mol Cell. 2020;78(6):1224–1236.e5.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.
  • Porta-de-la-Riva M, Fontrodona L, Villanueva A, et al. Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp. 2012; 64. 10.3791/4019 64
  • Zinovyeva AY, Bouasker S, Simard MJ, et al. Mutations in Conserved Residues of the C. elegans microRNA argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC loading and target repression. PLoS Genet. 2014;10(4):1004286.
  • Weifeng G, Claycomb JM, and Bpj, et al. Cloning Argonaute-associated small RNAs from Caenorhabditis elegans. Methods Mol Biol. 2011;725:251–80. DOI:10.1007/978-1-61779-046-1_17.
  • Li L, Veksler-Lublinsky I, Zinovyeva A, Miska EA, ed. HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development. PLOS Genet. 2019;15(10):e1008067.
  • Martin M, Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet.Journal. 2011;17(1):10–12.
  • Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108–e108.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155–D162.
  • Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol Syst Biol. 2011;7(1):539.
  • Waterhouse AM, Procter JB, Martin DMA, et al. Sequence analysis Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinforma Appl NOTE. 2009;25(9):1189–1191.
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4 :e05005. DOI:10.7554/eLife.05005.
  • Kim H, Kim J, Kim K, et al. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3 end modification. Nucleic Acids Res. 2019;47(5):2630–2640.
  • Karp X, Hammell M, Ow MC, et al. Effect of life history on microRNA expression during C. elegans development. RNA. 2011;17(4):639–651.
  • Kato M, de Lencastre A, Pincus Z, et al. Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegansdevelopment. Genome Biol. 2009;10(5):R54.
  • Zou Y, Chiu H, Zinovyeva A, et al. Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science. 2013;340(6130):372–376. 80-.
  • Moore MJ, Scheel TKH, Luna JM, et al. MiRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of argonaute target specificity. Nat Commun. 2015;6. DOI:10.1038/ncomms9864.
  • Yang A, Bofill-De Ros X, Shao TJ, et al. 3′ Uridylation confers miRNAs with non-canonical target repertoires. Mol Cell. 2019;75(3):511–522.e4.
  • Broughton JP, Lovci MT, Huang JL, et al. Pairing beyond the seed supports microRNA targeting specificity. Mol Cell. 2016;64(2):320–333.
  • Medley JC, Panzade G, Zinovyeva AY. Zinovyeva AY. microRNA strand selection: unwinding the rules. WIREs RNA. 2021;12(3). DOI:10.1002/wrna.1627
  • Kato M, Chen X, Inukai S, et al. Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA. 2011;17(10):1804–1820.
  • Chung WJ, Agius P, Westholm JO, et al. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res. 2011 Feb;21(2):286–300.
  • Ruby J, Jan C, Bartel D. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448(7149):83–86.
  • Grosswendt S, Filipchyk A, Manzano M, et al. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol Cell. 2014;54(6):1042–1054.
  • Helwak A, Kudla G, Dudnakova T, et al. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153(3):654–665.
  • Heo I, Joo C, Cho J, et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell. 2008;32(2):276–284.
  • Heo I, Joo C, Kim YK, et al. TUT4 in concert with lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138(4):696–708.
  • Burns DM, D’Ambrogio A, Nottrott S, et al. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature. 2011;473(7345):105–108.
  • Heo I, Ha M, Lim J, et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012;151(3):521–532.
  • Rüegger S, Großhans H. MicroRNA turnover: when, how, and why. Trends Biochem Sci. 2012;37(10):436–446.
  • Vieux KF, Prothro KP, Kelley LH, et al. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res. 2021;49(19):11167–11180.
  • Leite DJ, Ninova M, Hilbrant M, et al. Pervasive microRNA duplication in chelicerates: insights from the embryonic microRNA repertoire of the spider parasteatoda tepidariorum. Genome Biol Evol. 2016;8(7):2133–2144.
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–524. DOI:10.1038/nrm3838. Epub 2014 Jul 16. PMID: 25027649.
  • Zolotarov G, Fromm B, Legnini I, et al. MicroRNAs are deeply linked to the emergence of the complex octopus brain. bioRxiv. 2022 January 1; DOI:10.1101/2022.02.15.480520. Published online 2022.02.15.480520