2,000
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

A scalable system for the fast production of RNA with homogeneous terminal ends

, &
Pages 1077-1084 | Received 31 May 2022, Accepted 07 Sep 2022, Published online: 19 Sep 2022

References

  • Baronti L, Karlsson H, Marusic M, et al. A guide to large-scale RNA sample preparation. Anal Bioanal Chem. 2018 May;410(14):3239–3252.
  • Gholamalipour Y, Karunanayake Mudiyanselage A, Martin CT. 3’ end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character-RNA-Seq analyses. Nucleic Acids Res. 2018 Oct 12;46(18):9253–9263.
  • Milligan JF, Groebe DR, Witherell GW, et al. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798.
  • Pleiss JA, Derrick ML, Uhlenbeck OC. T7 RNA polymerase produces 5’ end heterogeneity during in vitro transcription from certain templates. RNA. 1998 Oct;4(10):1313–1317.
  • Avis JM, Conn GL, Walker SC. Cis-acting ribozymes for the production of RNA in vitro transcripts with defined 5’ and 3’ ends. Methods Mol Biol. 2012;941:83–98.
  • Ferre-D’Amare AR, Doudna JA. Use of cis- and trans-ribozymes to remove 5’ and 3’ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 1996 Mar 1;24(5):977–978.
  • Kore AR, Vaish NK, Kutzke U, et al. Sequence specificity of the hammerhead ribozyme revisited; the NHH rule. Nucleic Acids Res. 1998 Sep 15;26(18):4116–4120.
  • Schurer H, Lang K, Schuster J, et al. A universal method to produce in vitro transcripts with homogeneous 3’ ends. Nucleic Acids Res. 2002 Jun 15;30(12):e56.
  • Akoopie A, Muller UF. Cotranscriptional 3’-end processing of T7 RNA polymerase transcripts by a smaller HDV ribozyme. J Mol Evol. 2018 Aug;86(7):425–430.
  • Petrov A, Wu T, Puglisi EV, et al. RNA purification by preparative polyacrylamide gel electrophoresis. Methods Enzymol. 2013;530:315–330.
  • Price SR, Ito N, Oubridge C, et al. Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol. 1995 Jun 2;249(2):398–408.
  • Roth A, Weinberg Z, Chen AG, et al. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. 2014 Jan;10(1):56–60.
  • Weinberg Z, Kim PB, Chen TH, et al. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat Chem Biol. 2015 Aug;11(8):606–610.
  • Jimenez RM, Polanco JA, Luptak A. Chemistry and biology of self-cleaving ribozymes. Trends Biochem Sci. 2015 Nov;40(11):648–661.
  • Peabody DS. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 1993 Feb;12(2):595–600.
  • Srisawat C, Goldstein IJ, Engelke DR. Sephadex-binding RNA ligands: rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res. 2001 Jan 15;29(2):E4.
  • Rozhdestvensky TS, Tang TH, Tchirkova IV, et al. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res. 2003 Feb 1;31(3):869–877.
  • Parks GD, Duke GM, Palmenberg AC. Encephalomyocarditis virus 3C protease: efficient cell-free expression from clones which link viral 5’ noncoding sequences to the P3 region. J Virol. 1986 Nov;60(2):376–384.
  • Lytle JR, Wu L, Robertson HD. Domains on the hepatitis C virus internal ribosome entry site for 40s subunit binding. RNA. 2002 Aug;8(8):1045–1055.
  • Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008 Oct;18(10):505–516.
  • Huang L, Lilley DM. The molecular recognition of kink-turn structure by the L7Ae class of proteins. RNA. 2013 Dec;19(12):1703–1710.
  • Ye K, Jia R, Lin J, et al. Structural organization of box C/D RNA-guided RNA methyltransferase. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13808–13813.
  • Zhou Z, Reed R. Purification of functional RNA -protein complexes using MS 2- MBP. Curr Protoc Mol Biol. 2003 Aug; 63. Chapter 27:Unit 27 3. DOI: 10.1002/0471142727.mb2703s63