2,018
Views
8
CrossRef citations to date
0
Altmetric
Review

Evolution of complexity in non-viral oligonucleotide delivery systems: from gymnotic delivery through bioconjugates to biomimetic nanoparticles

ORCID Icon & ORCID Icon
Pages 1256-1275 | Received 29 Apr 2022, Accepted 08 Nov 2022, Published online: 21 Nov 2022

References

  • Cobb M. Who discovered messenger RNA? Curr Biol. 2015;25(13):R526–R32.
  • Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov. 2020;19(10):673–694.
  • Eisenstein M. Pharma’s roller-coaster relationship with RNA therapies. Nature. 2019;574(7778):S4–S6.
  • Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016;23(4):73–82.
  • Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16(6):630–643.
  • Zogg H, Singh R, Ro S. Current advances in RNA therapeutics for human diseases. Int J Mol Sci. 2022;23(5):2736.
  • Jakobsen U, Simonsen AC, Vogel S. DNA-controlled assembly of soft nanoparticles. J Am Chem Soc. 2008;130(32):10462–10463.
  • Schulz-Siegmund M, Aigner A. Nucleic acid delivery with extracellular vesicles. Adv Drug Deliv Rev. 2021;173:89–111.
  • Jeon JY, Ayyar VS, Mitra A. Pharmacokinetic and pharmacodynamic modeling of siRNA therapeutics – a minireview. Pharm Res. 2022;39(8):1749–1759.
  • Østergaard ME, Hoyos D, Cheryl L, et al. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Nucleic Acids Res. 2020;48(4):1691–1700.
  • Jakobsen U, Vogel S. Mismatch discrimination of lipidated DNA and LNA-probes (LiNAs) in hybridization-controlled liposome assembly. Org Biomol Chem. 2016;14(29):6985–6995.
  • Veedu RN, Wengel J. Locked nucleic acid as a novel class of therapeutic agents. RNA Biol. 2009;6(3):321–323.
  • Mukashyaka MC, C-l W, Ha K, et al. Pharmacokinetic/pharmacodynamic modeling of a cell-penetrating peptide phosphorodiamidate morpholino oligomer in mdx mice. Pharm Res. 2021;38(10):1731–1745.
  • Turner JJ, Jones S, Fabani MM, et al. RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis. 2007;38(1):1–7.
  • Lokugamage MP, Vanover D, Beyersdorf J, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng. 2021;5(9):1059–1068.
  • Liang X, Zhang J, Ou H, et al. Skin delivery of sirna using sponge spicules in combination with cationic flexible liposomes. Mol Ther Nucleic Acids. 2020;20:639–648.
  • Prakash TP, Graham MJ, Yu J, et al. Targeted delivery of antisenseoligonucleotides to hepatocytes using triantennary -acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 2014;42(13):8796–8807.
  • Takahashi M, Contu VR, Kabuta C, et al. SIDT2 mediates gymnosis, the uptake of naked single-stranded oligonucleotides into living cells. RNA Biol. 2017;14(11):1534–1543.
  • Paramasivam P, Franke C, Stöter M, et al. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J Cell Biol. 2022;221(2):e202110137.
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173–178.
  • Biscans A, Caiazzi J, Davis S, et al. The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res. 2020;48(14):7665–7680.
  • Parhiz H, Brenner JS, Patel P, et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J Control Release. 2021;344:50–61.
  • Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol Immunol. 2014;61(2):163–173.
  • Ge X, Chen L, Zhao B, et al. Rationale and application of PEGylated lipid-based system for advanced target delivery of siRNA. Front Pharmacol. 2020;11:598175.
  • Kouser L, Paudyal B, Kaur A, et al. Human properdin opsonizes nanoparticles and triggers a potent pro-inflammatory response by macrophages without involving complement activation. Front Immunol. 2018;9. DOI:10.3389/fimmu.2018.00131.
  • Wang Z, Hood ED, Nong J, et al. Combating complement’s deleterious effects on nanomedicine by conjugating complement regulatory proteins to nanoparticles. Adv Mater. 2021;34(8):e2107070.
  • Fulgenzi A, Ferrero ME. Defibrotide in the treatment of hepatic veno-occlusive disease. Hepat Med Evid Res. 2016;8:105–113.
  • Arias-Alpizar G, Kong L, Vlieg RC, et al. Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nat Commun. 2020;11(1):3638.
  • Sánchez A, Pedroso E, Grandas A. Easy introduction of maleimides at different positions of oligonucleotide chains for conjugation purposes. Org Biomol Chem. 2012;10(42):8478.
  • Ostro MJ, Giacomoni D, Lavelle D, et al. Evidence for translation of rabbit globin mRNA after liposome mediated insertion into a human cell line. Nature. 1978;274(5674):921–923.
  • Ries O, Löffler PMG, Vogel S. Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes. Org Biomol Chem. 2015;13(37):9673–9680.
  • Vogel S, Rohr K, Dahl O, et al. A substituted triaza crown ether as a binding site in DNA conjugates. Chem Commun. 2003;3(8):1006–1007.
  • Verhagen C, Bryld T, Raunkjær M, et al. A conformationally locked aminomethyl C-glycoside and studies on its N-pyren-1-ylcarbonyl derivative inserted into oligodeoxynucleotides. Eur J Org Chem. 2006;2006(11):2538–2548.
  • Zhang S, Chaput JC. Synthesis of glycerol nucleic acid (GNA) phosphoramidite monomers and oligonucleotide polymers. Curr Protoc Nucleic Acid Chem. 2010;42(1):4.40.1–4.18.
  • Venkatesan N, Kim SJ, Kim BH. Novel phosphoramidite building blocks in synthesis and applications toward modified oligonucleotides. Curr Med Chem. 2003;10(19):1973–1991.
  • Okochi KD, Monfregola L, Dickerson SM, et al. Synthesis of small-molecule/DNA hybrids through on-bead amide-coupling approach. J Org Chem. 2017;82(20):10803–10811.
  • Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 2004;558(1–3):63–68.
  • Farzan VM, Ulashchik EA, Martynenko-Makaev YV, et al. Automated solid-phase click synthesis of oligonucleotide conjugates: from small molecules to diverse N-acetylgalactosamine clusters. Bioconjug Chem. 2017;28(10):2599–2607.
  • Letsinger RL, Zhang GR, Sun DK, et al. Cholesteryl-conjugated oligonucleotides: synthesis, properties, and activity as inhibitors of replication of human immunodeficiency virus in cell culture. Proceedings of the National Academy of Sciences. 1989;86:6553–6556.
  • Rohr K, Vogel S. Polyaza crown ethers as non-nucleosidic building blocks in DNA conjugates: synthesis and remarkable stabilization of dsDNA. Chembiochem. 2006;7(3):463–470.
  • Liu H, Kwong B, Irvine DJ. Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angewandte Chemie. 2011;50(31):7052–7055.
  • Musumeci D, Montesarchio D. Synthesis of a cholesteryl-HEG phosphoramidite derivative and its application to lipid-conjugates of the anti-HIV 5ʹTGGGAG3. Hotoda’s Seq Mol. 2012;17:12378–12392.
  • Honcharenko D, Druceikaite K, Honcharenko M, et al. New alkyne and amine linkers for versatile multiple conjugation of oligonucleotides. ACS Omega. 2021;6(1):579–593.
  • Hanspach G, Trucks S, Hengesbach M. Strategic labelling approaches for RNA single-molecule spectroscopy. RNA Biol. 2019;16(9):1119–1132.
  • Jin Z, Geissler D, Qiu X, et al. A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA. Angew Chem Int Ed Engl. 2015;54(34):10024–10029.
  • Lee JS, Kim S, Na HK, et al. MicroRNA-responsive drug release system for selective fluorescence imaging and photodynamic therapy in vivo. Adv Healthc Mater. 2016;5(18):2386–2395.
  • Nakagawa O, Ming X, Huang L, et al. Targeted intracellular delivery of antisense oligonucleotides via conjugation with small-molecule ligands. J Am Chem Soc. 2010;132(26):8848–8849.
  • Orellana EA, Abdelaal AM, Rangasamy L, et al. Enhancing microRNA activity through increased endosomal release mediated by nigericin. Mol Ther Nucleic Acids. 2019;16:505–518.
  • Orellana EA, Tenneti S, Rangasamy L, et al. FolamiRs: ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. Sci Transl Med. 2017;9(401):eaam9327.
  • Gauthier F, Bertrand J-R, Vasseur -J-J, et al. Conjugation of doxorubicin to siRNA through disulfide-based self-immolative linkers. Molecules. 2020;25(11):2714.
  • Giedyk M, Jackowska A, Rownicki M, et al. Vitamin B 12 transports modified RNA into E. coli and S typhimurium cells. Chem Commun (Camb). 2019;55(6):763–766.
  • D’Onofrio J, Petraccone L, Martino L, et al. Synthesis, biophysical characterization, and anti-HIV activity of glyco-conjugated G-quadruplex-forming oligonucleotides. Bioconjug Chem. 2008;19(3):607–616.
  • Adinolfi M, De Napoli L, Di Fabio G, et al. Solid phase synthesis of oligonucleotides tethered to oligo-glucose phosphate tails. Tetrahedron. 2002;58(33):6697–6704.
  • Zhu L, Mahato RI. Targeted delivery of siRNA to hepatocytes and hepatic stellate cells by bioconjugation. Bioconjug Chem. 2010;21(11):2119–2127.
  • Hoober JK. ASGR1 and Its enigmatic relative, CLEC10A. Int J Mol Sci. 2020;21(14):4818.
  • Matsuda S, Keiser K, Nair JK, et al. siRNA conjugates carrying sequentially assembled trivalent N- acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem Biol. 2015;10(5):1181–1187.
  • Rajeev KG, Nair JK, Jayaraman M, et al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N -acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem. 2015;16(6):903–908.
  • Sharma VK, Osborn MF, Hassler MR, et al. Novel cluster and monomer-based GalNAc structures induce effective uptake of siRNAs in vitro and in vivo. Bioconjug Chem. 2018;29(7):2478–2488.
  • Yamamoto T, Sawamura M, Wada F, et al. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides. Bioorg Med Chem. 2016;24(1):26–32.
  • Watanabe A, Nakajima M, Kasuya T, et al. Comparative characterization of hepatic distribution and mrna reduction of antisense oligonucleotides conjugated with triantennary N-acetyl galactosamine and lipophilic ligands targeting apolipoprotein B. J Pharmacol Exp Ther. 2016;357(2):320–330.
  • Shemesh CS, Yu RZ, Gaus HJ, et al. Elucidation of the biotransformation pathways of a galnac3-conjugated antisense oligonucleotide in rats and monkeys. Mol Ther Nucleic Acids. 2016;5:e319.
  • Alexander VJ, Xia S, Hurh E, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40(33):2785–2796.
  • Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020;41(40):3936–3945.
  • Li X, Feng K, Li L, et al. Lipid–oligonucleotide conjugates for bioapplications. Natl Sci Rev. 2020;7(12):1933–1953.
  • Godeau G, Staedel C, Barthélémy P. Lipid-conjugated oligonucleotides via “click chemistry. Eff Inhibit Hepa C Virus Transl J Med Chem. 2008;51:4374–4376.
  • Kubo T, Yanagihara K, Takei Y, et al. Palmitic acid-conjugated 21-nucleotide siRNA enhances gene-silencing activity. Mol Pharm. 2011;8:2193–2203.
  • Kubo T, Takei Y, Mihara K, et al. Amino-modified and lipid-conjugated dicer-substrate siRNA enhances RNAi efficacy. Bioconjug Chem. 2012;23(2):164–173.
  • Ding Y, Wang W, Feng M, et al. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials. 2012;33(34):8893–8905.
  • Dovydenko I, Tarassov I, Venyaminova A, et al. Method of carrier-free delivery of therapeutic RNA importable into human mitochondria: lipophilic conjugates with cleavable bonds. Biomaterials. 2016;76:408–417.
  • Kubo T, Yanagihara K, Sato Y, et al. Gene-silencing potency of symmetric and asymmetric lipid-conjugated siRNAs and its correlation with dicer recognition. Bioconjug Chem. 2013;24(12):2045–2057.
  • Chillemi R, Greco V, Nicoletti VG, et al. Oligonucleotides Conjugated to Natural Lipids: synthesis of Phosphatidyl-Anchored Antisense Oligonucleotides. Bioconjug Chem. 2013;24:648–657.
  • Musacchio T, Vaze O, D’Souza G, et al. Effective stabilization and delivery of siRNA: reversible siRNA−phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug Chem. 2010;21:1530–1536.
  • Cogoi S, Jakobsen U, Pedersen EB, et al. Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles: delivery and bioactivity in pancreatic cancer cells. Sci Rep. 2016;6(1):38468.
  • Jakobsen U, Vogel S. Assembly of liposomes controlled by triple helix formation. Bioconjug Chem. 2013;24(9):1485–1495.
  • Jin C, He J, Zou J, et al. Phosphorylated lipid-conjugated oligonucleotide selectively anchors on cell membranes with high alkaline phosphatase expression. Nat Commun. 2019;10(1):10.
  • Kubo T, Nishimura Y, Sato Y, et al. Sixteen different types of lipid-conjugated sirnas containing saturated and unsaturated fatty acids and exhibiting enhanced RNAi potency. ACS Chem Biol. 2021;16(1):150–164.
  • Willibald J, Harder J, Sparrer K, et al. Click-modified anandamide siRNA enables delivery and gene silencing in neuronal and immune cells. J Am Chem Soc. 2012;134(30):12330–12333.
  • Sarett SM, Werfel TA, Lee L, et al. Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proceedings of the National Academy of Sciences. 2017; 114:E6490–E7.
  • Jin C, Zhang H, Zou J, et al. Floxuridine homomeric oligonucleotides “Hitchhike” with albumin in situ for cancer chemotherapy. Angewandte Chemie. 2018;57(29):8994–8997.
  • Biscans A, Coles A, Haraszti R, et al. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res. 2019;47(3):1082–1096.
  • Godinho B, Henninger N, Bouley J, et al. Transvascular delivery of hydrophobically modified siRNAs: gene silencing in the rat brain upon disruption of the blood-brain barrier. Mol Ther. 2018;26(11):2580–2591.
  • Biscans A, Haraszti RA, Echeverria D, et al. Hydrophobicity of lipid-conjugated sirnas predicts productive loading to small extracellular vesicles. Mol Ther. 2018;26(6):1520–1528.
  • Chappell AE, Gaus HJ, Berdeja A, et al. Mechanisms of palmitic acid-conjugated antisense oligonucleotide distribution in mice. Nucleic Acids Res. 2020;48(8):4382–4395.
  • Servais L, Mercuri E, Straub V, et al. Long-term safety and efficacy data of golodirsen in ambulatory patients with duchenne muscular dystrophy amenable to exon 53 skipping: a first-in-human, multicenter, two-part, open-label, Phase 1/2 trial. Nucleic Acid Ther. 2022;32(1):29–39.
  • Wagner KR, Kuntz NL, Koenig E, et al. Safety, tolerability, and pharmacokinetics of casimersen in patients with D uchenne muscular dystrophy amenable to exon 45 skipping: a randomized, double-blind, placebo-controlled, dose-titration trial. Muscle Nerve. 2021;64(3):285–292.
  • Moulton HM, Nelson MH, Hatlevig SA, et al. Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjug Chem. 2004;15(2):290–299.
  • Shiraishi T, Pankratova S, Nielsen PE. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides. Chem Biol. 2005;12(8):923–929.
  • Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol. 2020;11:101–123.
  • Cantini L, Attaway CC, Butler B, et al. Fusogenic-oligoarginine peptide-mediated delivery of siRNAs targeting the CIP2A oncogene into oral cancer cells. PLoS ONE. 2013;8(9):e73348.
  • Abes S, Turner JJ, Ivanova GD, et al. Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res. 2007;35(13):4495–4502.
  • Abes S, Moulton HM, Clair P, et al. Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release. 2006;116(3):304–313.
  • Youngblood DS, Hatlevig SA, Hassinger JN, et al. Stability of cell-penetrating peptide−morpholino oligomer conjugates in human serum and in cells. Bioconjug Chem. 2007;18(1):50–60.
  • Bongartz J-P, Aubertain A-M, Milhaud PG, et al. Imporved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide. Nucleic Acids Res. 1994;22(22):4681–4688.
  • Zatsepin TS, Stetsenko DA, Arzumanov AA, et al. Synthesis of peptide-oligonucleotide conjugates with single and multiple peptides attached to 2’-aldehydes through thiazolidine, oxime, and hydrazine linkages. Bioconjug Chem. 2002;13:822–830.
  • Group VS. A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with aids. Am J Ophthalmol. 2002;133:467–474.
  • Deas TS, Binduga-Gajewska I, Tilgner M, et al. Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol. 2005;79(8):4599–4609.
  • Kinney RM, Huang CY, Rose BC, et al. Inhibition of dengue virus serotypes 1 to 4 in vero cell cultures with morpholino oligomers. J Virol. 2005;79(8):5116–5128.
  • Sleeman K, Stein DA, Tamin A, et al. Inhibition of measles virus infections in cell cultures by peptide-conjugated morpholino oligomers. Virus Res. 2009;140(1–2):49–56.
  • Alonso M, Stein DA, Thomann E, et al. Inhibition of infectious haematopoietic necrosis virus in cell cultures with peptide-conjugated morpholino oligomers. J Fish Dis. 2005;28(7):399–410.
  • Bottcher-Friebertshauser E, Stein DA, Klenk H-D, et al. Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J Virol. 2011;85(4):1554–1562.
  • Rosenke K, Leventhal S, Moulton HM, et al. Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers. J Antimicrob Chemother. 2021;76(2):413–417.
  • Li C, Callahan AJ, Phadke KS, et al. Automated flow synthesis of peptide–PNA conjugates. ACS Cent Sci. 2022;8(2):205–213.
  • Patenge N, Pappesch R, Krawack F, et al. Inhibition of Growth and Gene Expression by PNA-peptide Conjugates in Streptococcus pyogenes. Mol Ther Nucleic Acids. 2013;2:e132.
  • Alam MR, Ming X, Fisher M, et al. Multivalent cyclic RGD conjugates for targeted delivery of small interfering RNA. Bioconjug Chem. 2011;22(8):1673–1681.
  • Cen B, Wei Y, Huang W, et al. An efficient bivalent cyclic RGD-PIK3CB siRNA conjugate for specific targeted therapy against glioblastoma in vitro and in vivo. Mol Ther Nucleic Acids. 2018;13:220–232.
  • Detzer A, Overhoff M, Wünsche W, et al. Increased RNAi is related to intracellular release of siRNA via a covalently attached signal peptide. RNA. 2009;15(4):627–636.
  • Flierl A, Jackson C, Cottrell B, et al. Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther. 2003;7(4):550–557.
  • Basu S, Wickstrom E. Synthesis and characterization of a peptide nucleic acid conjugated to a d -peptide analog of insulin-like growth factor 1 for increased cellular uptake. Bioconjug Chem. 1997;8(4):481–488.
  • Nikan M, Tanowitz M, Dwyer CA, et al. Targeted delivery of antisense oligonucleotides using neurotensin peptides. J Med Chem. 2020;63(15):8471–8484.
  • Ivanova GD, Arzumanov A, Abes R, et al. Improved cell-penetrating peptide–PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res. 2008;36(20):6418–6428.
  • Jearawiriyapaisarn N, Moulton HM, Buckley B, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther. 2008;16(9):1624–1629.
  • Hammond SM, Hazell G, Shabanpoor F, et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy.Proceedings of the National Academy of Sciences. 2016; 113(39):10962–10967.
  • Bersani M, Rizzuti M, Pagliari E, et al. Cell-penetrating peptide-conjugated morpholino rescues SMA in a symptomatic preclinical model. Mol Ther. 2022;30(3):1288–1299.
  • Miliotou AN, Pappas IS, Spyroulias G, et al. Development of a novel PTD-mediated IVT-mRNA delivery platform for potential protein replacement therapy of metabolic/genetic disorders. Mol Ther Nucleic Acids. 2021;26:694–710.
  • Stafforst T, Schneider MF. An RNA-deaminase conjugate selectively repairs point mutations. Angew Chem Int Ed Engl. 2012;51(44):11166–11169.
  • Satake N, Duong C, Yoshida S, et al. Novel targeted therapy for precursor B-cell acute lymphoblastic leukemia: anti-CD22 antibody-MXD3 antisense oligonucleotide conjugate. Mol Med. 2016;22(1):632–642.
  • Mehta G, Scheinman RI, Holers VM, et al. A new approach for the treatment of arthritis in mice with a novel conjugate of an Anti-C5aR1 antibody and C5 small interfering RNA. J Immunol. 2015;194(11):5446–5454.
  • Cuellar TL, Barnes D, Nelson C, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB–siRNA conjugates. Nucleic Acids Res. 2015;43(2):1189–1203.
  • Sreedurgalakshmi K, Srikar R, Harikrishnan K, et al. Cetuximab–siRNA conjugate linked through cationized gelatin knocks down KRAS G12C mutation in NSCLC sensitizing the cells toward gefitinib. Technol Cancer Res Treat. 2021;20:153303382110414.
  • Gao F, Yin J, Chen Y, et al. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front Bioeng Biotechnol. 2022;10. DOI:10.3389/fbioe.2022.972933
  • Bruno JG. Applications in which aptamers are needed or wanted in diagnostics and therapeutics. Pharmaceuticals. 2022;15(6):693.
  • Betat H, Vogel S, Struhalla M, et al. Aptamers that recognize the lipid moiety of the antibiotic moenomycin A. Biol Chem. 2003;384(10–11):1497–1500.
  • Chu TC. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006;34(10):e73–e.
  • Rosch JC, Hoogenboezem EN, Sorets AG, et al. Albumin-binding aptamer chimeras for improved siRNA bioavailability. Cell Mol Bioeng. 2022;15(2):161–173.
  • Yu X, Ghamande S, Liu H, et al. Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2+ breast cancer. Mol Ther Nucleic Acids. 2018;10:317–330.
  • Jeong H, Lee SH, Hwang Y, et al. Multivalent aptamer-RNA conjugates for simple and efficient delivery of doxorubicin/siRNA into multidrug-resistant cells. Macromol Biosci. 2017;17(4):1600343.
  • Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences. 1987;84(21):7413–7417.
  • Breunig M, Lungwitz U, Liebl R, et al. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci U S A. 2007;104(36):14454–14459.
  • Fenton OS, Kauffman KJ, McClellan RL, et al. Customizable lipid nanoparticle materials for the delivery of siRNAs and mRNAs. Angew Chem Int Ed Engl. 2018;57(41):13582–13586.
  • Ndeupen S, Qin Z, Jacobsen S, et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24(12):103479.
  • Shi D, Beasock D, Fessler A, et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079.
  • Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36(6):892–899.
  • Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm. 2008;354(1–2):56–62.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
  • Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15(4):313–320.
  • Ramishetti S, Hazan-Halevy I, Palakuri R, et al. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv Mater. 2020;32(12):e1906128.
  • Ferino A, Miglietta G, Picco R, et al. MicroRNA therapeutics: design of single-stranded miR-216b mimics to target KRAS in pancreatic cancer cells. RNA Biol. 2018;15(10):1273–1285.
  • Pan J, Attia SA, Subhan MA, et al. Monoclonal antibody 2C5-modified mixed dendrimer micelles for tumor-targeted codelivery of chemotherapeutics and siRNA. Mol Pharm. 2020;17(5):1638–1647.
  • Akinc A, Maier MA, Manoharan M, et al. The onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14(12):1084–1087.
  • Kulkarni JA, Witzigmann D, Chen S, et al. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 2019;52(9):2435–2444.
  • Zimmermann TS, Lee ACH, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441(7089):111–114.
  • Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172–176.
  • Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo**. Angewandte Chemie. 2012;51(34):8529–8533.
  • Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25(6):1316–1327.
  • Hassett KJ, Benenato KE, Jacquinet E, et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol Ther Nucleic Acids. 2019;15:1–11.
  • Schoenmaker L, Witzigmann D, Kulkarni JA, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm. 2021;601:120586.
  • Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA loading into extracellular vesicles via electroporation is size-dependent and enables limited gene delivery. Mol Pharm. 2015;12(10):3650–3657.
  • Kooijmans SAA, Stremersch S, Braeckmans K, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release. 2013;172(1):229–238.
  • O’Loughlin AJ, Mäger I, De Jong OG, et al. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol Ther. 2017;25(7):1580–1587.
  • Didiot M-C, Hall LM, Coles AH, et al. Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther. 2016;24(10):1836–1847.
  • Evers MJW, Wakker SI, Groot EM, et al. Functional siRNA delivery by extracellular vesicle–liposome hybrid nanoparticles. Adv Healthc Mater. 2022;11(5):2101202.
  • Reshke R, Taylor JA, Savard A, et al. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat Biomed Eng. 2020;4(1):52–68.
  • Jhan -Y-Y, Palou Zuniga G, Singh KA, et al. Polymer-coated extracellular vesicles for selective codelivery of chemotherapeutics and siRNA to cancer cells. ACS Appl Bio Mater. 2021;4(2):1294–1306.
  • Diao Y, Wang G, Zhu B, et al. Loading of ”cocktail siRNAs” into extracellular vesicles via TAT-DRBD peptide for the treatment of castration-resistant prostate cancer. Cancer Biol Ther. 2022;23(1):163–172.
  • Sharma K, Porat ZE, Gedanken A. Designing natural polymer-based capsules and spheres for biomedical applications—a review. Polymers. 2021;13(24):4307.
  • Francisco V, Rebelo C, Rodrigues AF, et al. A high-throughput screening platform to identify nanocarriers for efficient delivery of RNA-based therapies. Methods. 2021;190:13–25.
  • Chen G, Zhao B, Ruiz EF, et al. Advances in the polymeric delivery of nucleic acid vaccines. Theranostics. 2022;12(9):4081–4109.
  • Beg S, Almalki WH, Khatoon F, et al. Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discov Today. 2021;26(8):1891–1903.
  • Laroui N, Coste M, Su D, et al. Cell‐selective siRNA delivery using glycosylated dynamic covalent polymers self‐assembled in situ by RNA templating. Angewandte Chemie. 2021;60(11):5783–5787.
  • Soriano-Giles G, Giles-Mazón EA, Lopez N, et al. Metal organic frameworks (MOFS) as non-viral carriers for DNA and RNA delivery: a review. Rev Inorg Chem. 2022;1–19:. doi:10.1515/revic-2022-0004.
  • Zhuang J, Gong H, Zhou J, et al. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles. Sci Adv. 2020;6(13):eaaz6108.
  • Gao M, Yang C, Wu C, et al. Hydrogel–metal-organic-framework hybrids mediated efficient oral delivery of siRNA for the treatment of ulcerative colitis. J Nanobiotechnology. 2022;20(1):20.
  • Ohashi S, Hashiya F, Abe H. Variety of nucleotide polymerase mutants aiming to synthesize modified RNA. Chembiochem. 2021;22(14):2398–2406.
  • Vogel S, Stembera K, Hennig L, et al. Moenomycin analogues with modified lipid side chains from indium-mediated barbier-type reactions. Tetrahedron. 2001;57(19):4139–4146.
  • Vogel S, Stembera K, Hennig L, et al. Moenomycin analogues with long-chain amine lipid parts from reductive aminations. Tetrahedron. 2001;57(19):4147–4160.
  • Buchynskyy A, Kempin U, Vogel S, et al. Synthesis of fluorescent derivatives of the antibiotic moenomycin A. Eur J Org Chem. 2002;2002(7):1149–1162.
  • Rabe A, Löffler PMG, Ries O, et al. Programmable fusion of liposomes mediated by lipidated PNA. Chem Commun. 2017;53(87):11921–11924.
  • Jakobsen U, Vogel S. Assembly of liposomes controlled by triple helix formation. Bioconjugate Chem. 2013;24(9):1485–1495.
  • Ries O, Löffler PMG, Rabe A, et al. Efficient liposome fusion mediated by lipid-nucleic acid conjugates. Org Biomol Chem. 2017;15(42):8936–8945.
  • Jakobsen U, Vogel S. Chapter 12 DNA-controlled assembly of liposomes in diagnostics. Methods Enzymol. 2009;464:233–248.
  • Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–892.
  • Kasikci Y, Gronemeyer H. Complexity against current cancer research: are we on the wrong track? Int J Cancer. 2022;150(10):1569–1578.
  • Sicklick JK, Kato S, Okamura R, et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study. Nat Med. 2019;25(5):744–750.