1,361
Views
2
CrossRef citations to date
0
Altmetric
Review

Structural diversity and biological role of the 5’ untranslated regions of picornavirus

, , , , &
Pages 548-562 | Accepted 28 Jun 2023, Published online: 03 Aug 2023

References

  • Li K, Wang C, Yang F, et al. Virus-host interactions in foot-and-mouth disease virus infection. Front Immunol. 2021;12:571509. doi: 10.3389/fimmu.2021.571509
  • Zhang M, Hill JE, Fernando C, et al. Respiratory viruses identified in western Canadian beef cattle by metagenomic sequencing and their association with bovine respiratory disease. Transbound Emerg Dis. 2019;66(3):1379–1386. doi: 10.1111/tbed.13172
  • Zhou Y, Chen X, Tang C, et al. Detection and genomic characterization of bovine rhinitis virus in China. Animals (Basel). 2023;13(2):312. doi: 10.3390/ani13020312
  • Bhattarai S, Lin CM, Temeeyasen G, et al. Bovine rhinitis B virus is highly prevalent in acute bovine respiratory disease and causes upper respiratory tract infection in calves. J Gen Virol. 2022;103(2): doi: 10.1099/jgv.0.001714
  • Zhai SL, Xie YL, Zhai Q, et al. Genome characterization and phylogenetic analysis of the first bovine rhinitis B virus isolate in China. Front Vet Sci. 2021;8:721284. doi:10.3389/fvets.2021.721284
  • Diaz-Méndez A, Viel L, Shewen P, et al. Genomic analysis of a Canadian equine rhinitis a virus reveals low diversity among field isolates. Virus Genes. 2013;46(2):280–286. doi: 10.1007/s11262-012-0848-0
  • Rossi TM, Moore A, O’ Sullivan TL, et al. Risk factors for duration of equine rhinitis a virus respiratory disease. Equine Vet J. 2020;52(3):369–373. doi: 10.1111/evj.13204
  • Lynch SE, Gilkerson JR, Symes SJ, et al. Persistence and chronic urinary shedding of the aphthovirus equine rhinitis a virus. Comp Immunol Microbiol Infect Dis. 2013;36(1):95–103. doi: 10.1016/j.cimid.2012.10.003
  • Kapoor A, Victoria J, Simmonds P, et al. A highly divergent picornavirus in a marine mammal. J Virol. 2008;82(1):311–320. doi: 10.1128/JVI.01240-07
  • Yugo DM, Hauck R, Shivaprasad HL, et al. Hepatitis virus infections in poultry. Avian Dis. 2016;60(3):576–588. doi: 10.1637/11229-070515-Review.1
  • Yehia N, Erfan AM, Omar SE, et al. Dual circulation of duck hepatitis A virus genotypes 1 and 3 in Egypt. Avian Dis. 2021;65(1):1–9. doi: 10.1637/aviandiseases-D-20-00075
  • Carocci M, Bakkali-Kassimi L. The encephalomyocarditis virus. Virulence. 2012;3(4):351–367. doi: 10.4161/viru.20573
  • Doysabas KCC, Oba M, Furuta M, et al. Encephalomyocarditis virus is potentially derived from eastern bent-wing bats living in East Asian countries. Virus Res. 2019;259:62–67. doi:10.1016/j.virusres.2018.10.020
  • Liang Z, Kumar AS, Jones MS, et al. Phylogenetic analysis of the species theilovirus: emerging murine and human pathogens. J Virol. 2008;82(23):11545–11554. doi: 10.1128/JVI.01160-08
  • Tan SZ, Tan MZ, Prabakaran M. Saffold virus, an emerging human cardiovirus. Rev Med Virol. 2017;27(1):27. doi: 10.1002/rmv.1908
  • Himeda T, Ohara Y. Saffold virus, a novel human cardiovirus with unknown pathogenicity. J Virol. 2012;86(3):1292–1296. doi: 10.1128/JVI.06087-11
  • Reuter G, Boros Á, Földvári G, et al. Dicipivirus (family Picornaviridae) in wild Northern white-breasted hedgehog (Erinaceus roumanicus). Arch Virol. 2018;163(1):175–181. doi: 10.1007/s00705-017-3565-0
  • Yoshida H. Human enterovirus. Nihon Rinsho. 2003;61(Suppl 3):463–467.
  • Nasri D, Bouslama L, Pillet S, et al. Basic rationale, current methods and future directions for molecular typing of human enterovirus. Expert Rev Mol Diagn. 2007;7(4):419–434. doi: 10.1586/14737159.7.4.419
  • Mosena ACS, da Silva MS, Gularte JS, et al. Genome sequence of a Brazilian bovine enterovirus. Microbiol Resour Announc. 2022;11(2):e0120021. doi: 10.1128/mra.01200-21
  • Ji C, Zhang Y, Sun R, et al. Isolation and identification of type F bovine enterovirus from clinical cattle with diarrhoea. Viruses. 2021;13(11):2217. doi: 10.3390/v13112217
  • Moon HJ, Song D, Seon BH, et al. Complete genome analysis of porcine enterovirus B isolated in Korea. J Virol. 2012;86(18):10250. doi: 10.1128/JVI.01548-12
  • Oberste MS, Maher K, Pallansch MA. Molecular phylogeny and proposed classification of the simian picornaviruses. J Virol. 2002;76(3):1244–1251. doi: 10.1128/JVI.76.3.1244-1251.2002
  • Rollinger JM, Schmidtke M. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev. 2011;31(1):42–92. doi: 10.1002/med.20176
  • Jacobs SE, Lamson DM, St George K, et al. Human rhinoviruses. Clin Microbiol Rev. 2013;26(1):135–162. doi: 10.1128/CMR.00077-12
  • Huang JA, Ficorilli N, Hartley CA, et al. Equine rhinitis B virus: a new serotype. J Gen Virol. 2001;82(11):2641–2645. doi: 10.1099/0022-1317-82-11-2641
  • Pintó RM, Pérez-Rodríguez FJ, Costafreda MI, et al. Pathogenicity and virulence of hepatitis a virus. Virulence. 2021;12(1):1174–1185. doi: 10.1080/21505594.2021.1910442
  • Feinstone SM. History of the discovery of hepatitis a virus. Cold Spring Harb Perspect Med. 2019;9(5):a031740. doi: 10.1101/cshperspect.a031740
  • Abi KM, Yang C, Tang C, et al. Aichivirus C isolate is a diarrhoea-causing pathogen in goats. Transbound Emerg Dis. 2022;69(5):e2268–e75. doi: 10.1111/tbed.14566
  • Abi KM, Yu Z, Jing ZZ, et al. Identification of a novel Aichivirus D in sheep. Infect Genet Evol. 2021;91:104810. doi:10.1016/j.meegid.2021.104810
  • Barbknecht M, Sepsenwol S, Leis E, et al. Characterization of a new picornavirus isolated from the freshwater fish Lepomis macrochirus. J Gen Virol. 2014;95(3):601–613. doi: 10.1099/vir.0.061960-0
  • Lange J, Groth M, Fichtner D, et al. Virus isolate from carp: genetic characterization reveals a novel picornavirus with two aphthovirus 2A-like sequences. J Gen Virol. 2014;95(1):80–90. doi: 10.1099/vir.0.058172-0
  • Phelps NB, Mor SK, Armien AG, et al. Isolation and molecular characterization of a novel picornavirus from baitfish in the USA. PLoS One. 2014;9(2):e87593. doi: 10.1371/journal.pone.0087593
  • Kabuga AI, Nejati A, Soheili P, et al. Human parechovirus are emerging pathogens with broad spectrum of clinical syndromes in adults. J Med Virol. 2020;92(12):2911–2916. doi: 10.1002/jmv.26395
  • Olijve L, Jennings L, Walls T. Human parechovirus: an increasingly recognized cause of sepsis-like illness in young infants. Clin Microbiol Rev. 2018;31(1):31. doi: 10.1128/CMR.00047-17
  • Lundstig A, McDonald SL, Maziarz M, et al. Neutralizing Ljungan virus antibodies in children with newly diagnosed type 1 diabetes. J Gen Virol. 2021;102(5): doi: 10.1099/jgv.0.001602
  • Salisbury AM, Begon M, Dove W, et al. Ljungan virus is endemic in rodents in the UK. Arch Virol. 2014;159(3):547–551. doi: 10.1007/s00705-013-1731-6
  • Fichtner D, Philipps A, Groth M, et al. Characterization of a novel picornavirus isolate from a diseased European eel (Anguilla). J Virol. 2013;87(19):10895–10899. doi: 10.1128/JVI.01094-13
  • Hahn MA, Dheilly NM, Pfeiffer JK. Genome characterization, prevalence, and transmission mode of a novel picornavirus associated with the threespine stickleback fish (Gasterosteus aculeatus). J Virol. 2019;93(9). doi: 10.1128/JVI.02277-18
  • Ibrahim YM, Zhang W, Werid GM, et al. Isolation, characterization, and molecular detection of porcine sapelovirus. Viruses. 2022;14(2):14. doi: 10.3390/v14020349
  • Ray PK, Desingu PA, Kumari S, et al. Porcine sapelovirus among diarrhoeic piglets in India. Transbound Emerg Dis. 2018;65(1):261–263. doi: 10.1111/tbed.12628
  • Zhang W, Kataoka M, Doan HY, et al. Characterization of a novel simian sapelovirus isolated from a cynomolgus monkey using PLC/PRF/5 cells. Sci Rep. 2019;9(1):20221. doi: 10.1038/s41598-019-56725-z
  • Zhang X, Zhu Z, Yang F, et al. Review of Seneca Valley virus: a call for increased surveillance and research. Front Microbiol. 2018;9:940. doi:10.3389/fmicb.2018.00940
  • Ray PK, Desingu PA, Anoopraj R, et al. Identification and genotypic characterization of porcine teschovirus from selected pig populations in India. Trop Anim Health Prod. 2020;52(3):1161–1166. doi: 10.1007/s11250-019-02114-7
  • Sawant PM, Atre N, Kulkarni A, et al. Detection and molecular characterization of porcine enterovirus G15 and teschovirus from India. Pathog Dis. 2020;78(5). doi: 10.1093/femspd/ftaa039
  • Salles MW, Scholes SF, Dauber M, et al. Porcine teschovirus polioencephalomyelitis in western Canada. J Vet Diagn Invest. 2011;23(2):367–373. doi: 10.1177/104063871102300231
  • Hauck R, Sentíes-Cué CG, Wang Y, et al. Evolution of avian encephalomyelitis virus during embryo-adaptation. Vet Microbiol. 2017;204:1–7. doi:10.1016/j.vetmic.2017.04.005
  • Goto Y, Yaegashi G, Kumagai Y, et al. Detection of avian encephalomyelitis virus in chickens in Japan using RT-PCR. J Vet Med Sci. 2019;81(1):103–106. doi: 10.1292/jvms.18-0550
  • Welchman Dde B, Cox WJ, Gough RE, et al. Avian encephalomyelitis virus in reared pheasants: a case study. Avian Pathol. 2009;38(3):251–256. doi: 10.1080/03079450902912168
  • Zell R, Delwart E, Gorbalenya AE, et al. ICTV virus taxonomy profile: picornaviridae. J Gen Virol. 2017;98(10):2421–2422. doi: 10.1099/jgv.0.000911
  • Hargitai R, Pankovics P, Boros Á, et al. Novel picornavirus (family Picornaviridae) from freshwater fishes (Perca fluviatilis, Sander lucioperca, and Ameiurus melas) in Hungary. Arch Virol. 2021;166(9):2627–2632. doi: 10.1007/s00705-021-05167-y
  • Gorbalenya AE, Krupovic M, Mushegian A. The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat Microbiol. 2020;5(5):668–674. doi: 10.1038/s41564-020-0709-x
  • Zell R. Picornaviridae—the ever-growing virus family. Arch Virol. 2018;163(2):299–317. doi: 10.1007/s00705-017-3614-8
  • Jacobson MF, Baltimore D. Polypeptide cleavages in the formation of poliovirus proteins. Proc Natl Acad Sci U S A. 1968;61(1):77–84. doi: 10.1073/pnas.61.1.77
  • Kiehn ED, Holland JJ. Synthesis and cleavage of enterovirus polypeptides in mammalian cells. J Virol. 1970;5(3):358–367. doi: 10.1128/jvi.5.3.358-367.1970
  • Sun Y, Guo Y, Lou Z. Formation and working mechanism of the picornavirus VPg uridylylation complex. Curr Opin Virol. 2014;9:24–30. doi: 10.1016/j.coviro.2014.09.003
  • Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res. 2015;206:12–26. doi: 10.1016/j.virusres.2014.12.028
  • Pathak HB, Oh HS, Goodfellow IG, et al. Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation. J Biol Chem. 2008;283(45):30677–30688. doi: 10.1074/jbc.M806101200
  • Rodrigues TCS, Nielsen O, Burek-Huntington KA, et al. Genomic characterization of picornaviruses isolated from ribbon (Histriophoca fasciata) and harbor (Phoca vitulina) seals. Front Vet Sci. 2020;7:554716. doi:10.3389/fvets.2020.554716
  • Nayak A, Goodfellow IG, Belsham GJ. Factors required for the uridylylation of the foot-and-mouth disease virus 3B1, 3B2, and 3B3 peptides by the RNA-dependent RNA polymerase (3Dpol) in vitro. J Virol. 2005;79(12):7698–7706. doi: 10.1128/JVI.79.12.7698-7706.2005
  • Melchers WJ, Hoenderop JG, Bruins Slot HJ, et al. Kissing of the two predominant hairpin loops in the coxsackie B virus 3’ untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J Virol. 1997;71(1):686–696. doi: 10.1128/jvi.71.1.686-696.1997
  • Duque H, Palmenberg AC. Phenotypic characterization of three phylogenetically conserved stem-loop motifs in the mengovirus 3′ untranslated region. J Virol. 2001;75(7):3111–3120. doi: 10.1128/JVI.75.7.3111-3120.2001
  • Penza V, Russell SJ, Schulze AJ, et al. The long-lasting enigma of polycytidine (polyC) tract. PLOS Pathog. 2021;17(8):e1009739. doi: 10.1371/journal.ppat.1009739
  • Staple DW, Butcher SE. Pseudoknots: RNA structures with diverse functions. PLoS Biol. 2005;3(6):e213. doi: 10.1371/journal.pbio.0030213
  • Herold J, Andino R. Poliovirus RNA replication requires genome circularization through a protein–protein bridge. Mol Cell. 2001;7(3):581–591. doi: 10.1016/S1097-2765(01)00205-2
  • Lee KM, Chen CJ, Shih SR. Regulation mechanisms of viral IRES-driven translation. Trends Microbiol. 2017;25(7):546–561. doi: 10.1016/j.tim.2017.01.010
  • Palmenberg AC, Osorio JE. Cardioviral poly(C) tracts and viral pathogenesis. Arch Virol Suppl. 1994;9:67–77.
  • Bae YS, Kang Y, Ohtsuka E, et al. Development of a recombinant RNA technique for the construction of chimeric RNA with a long poly(C) tract. Nucleic Acids Res. 1993;21(11):2703–2708. doi: 10.1093/nar/21.11.2703
  • Zhu Z, Yang F, Cao W, et al. The pseudoknot region of the 5′ untranslated region is a determinant of viral tropism and virulence of foot-and-mouth disease virus. J Virol. 2019;93(8): doi: 10.1128/JVI.02039-18
  • Hertz MI, Thompson SR. Mechanism of translation initiation by dicistroviridae IGR IRESs. Virology. 2011;411(2):355–361. doi: 10.1016/j.virol.2011.01.005
  • Leppek K, Das R, Barna M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–174. doi: 10.1038/nrm.2017.103
  • Barton DJ, O’ Donnell BJ, Flanegan JB. 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. Embo J. 2001;20(6):1439–1448. doi: 10.1093/emboj/20.6.1439
  • Yang F, Zhu Z, Cao W, et al. Genetic determinants of altered virulence of type O foot-and-mouth disease virus. J Virol. 2020;94(7): doi: 10.1128/JVI.01657-19
  • Kloc A, Diaz-San Segundo F, Schafer EA, et al. Foot-and-mouth disease virus 5' -terminal S fragment is required for replication and modulation of the innate immune response in host cells. Virology. 2017;512:132–143. doi:10.1016/j.virol.2017.08.036
  • Nagashima S, Sasaki J, Taniguchi K. The 5′-terminal region of the Aichi virus genome encodes cis -acting replication elements required for positive- and negative-strand RNA synthesis. J Virol. 2005;79(11):6918–6931. doi: 10.1128/JVI.79.11.6918-6931.2005
  • Mason PW, Bezborodova SV, Henry TM. Identification and characterization of a cis-acting replication element (cre) adjacent to the internal ribosome entry site of foot-and-mouth disease virus. J Virol. 2002;76(19):9686–9694. doi: 10.1128/JVI.76.19.9686-9694.2002
  • Steil BP, Barton DJ. Cis-active RNA elements (CREs) and picornavirus RNA replication. Virus Res. 2009;139(2):240–252. doi: 10.1016/j.virusres.2008.07.027
  • Hollister JR, Vagnozzi A, Knowles NJ, et al. Molecular and phylogenetic analyses of bovine rhinovirus type 2 shows it is closely related to foot-and-mouth disease virus. Virology. 2008;373(2):411–425. doi: 10.1016/j.virol.2007.12.019
  • Harris TJ, Brown F. Biochemical analysis of a virulent and an avirulent strain of foot-and-mouth disease virus. J Gen Virol. 1977;34(1):87–105. doi: 10.1099/0022-1317-34-1-87
  • Escarmís C, Toja M, Medina M, et al. Modifications of the 5' untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Res. 1992;26(2):113–125. doi: 10.1016/0168-1702(92)90151-X
  • Black DN, Stephenson P, Rowlands DJ, et al. Sequence and location of the poly C tract in aphtho- and cardiovirus RNA. Nucleic Acids Res. 1979;6(7):2381–2390. doi: 10.1093/nar/6.7.2381
  • Brown F, Newman J, Stott J, et al. Poly(c) in animal viral RNAs. Nature. 1974;251(5473):342–344. doi: 10.1038/251342a0
  • Rieder E, Bunch T, Brown F, et al. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. J Virol. 1993;67(9):5139–5145. doi: 10.1128/jvi.67.9.5139-5145.1993
  • Hahn H, Palmenberg AC. Encephalomyocarditis viruses with short poly(C) tracts are more virulent than their mengovirus counterparts. J Virol. 1995;69(4):2697–2699. doi: 10.1128/jvi.69.4.2697-2699.1995
  • Martin LR, Duke GM, Osorio JE, et al. Mutational analysis of the mengovirus poly(C) tract and surrounding heteropolymeric sequences. J Virol. 1996;70(3):2027–2031. doi: 10.1128/jvi.70.3.2027-2031.1996
  • Duke GM, Palmenberg AC. Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J Virol. 1989;63(4):1822–1826. doi: 10.1128/jvi.63.4.1822-1826.1989
  • Martin LR, Neal ZC, McBride MS, et al. Mengovirus and encephalomyocarditis virus poly(C) tract lengths can affect virus growth in murine cell culture. J Virol. 2000;74(7):3074–3081. doi: 10.1128/JVI.74.7.3074-3081.2000
  • Rietveld K, Van Poelgeest R, Pleij CW, et al. The tRNA-Uke structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res. 1982;10(6):1929–1946. doi: 10.1093/nar/10.6.1929
  • Brierley I, Pennell S, Gilbert RJ. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol. 2007;5(8):598–610. doi: 10.1038/nrmicro1704
  • Mans RM, Pleij CW, Bosch L. tRNA-like structures. Structure, function and evolutionary significance. Eur J Biochem. 1991;201(2):303–324. doi: 10.1111/j.1432-1033.1991.tb16288.x
  • Gultyaev AP, Olsthoorn RC. A family of non-classical pseudoknots in influenza a and B viruses. RNA Biol. 2010;7(2):125–129. doi: 10.4161/rna.7.2.11287
  • Moss WN, Dela-Moss LI, Priore SF, et al. The influenza a segment 7 mRNA 3′ splice site pseudoknot/hairpin family. RNA Biol. 2012;9(11):1305–1310. doi: 10.4161/rna.22343
  • Kieft JS, Rabe JL, Chapman EG. New hypotheses derived from the structure of a flaviviral Xrn1-resistant RNA: conservation, folding, and host adaptation. RNA Biol. 2015;12(11):1169–1177. doi: 10.1080/15476286.2015.1094599
  • Plant EP, Dinman JD. The role of programmed-1 ribosomal frameshifting in coronavirus propagation. Front Biosci. 2008;13(13):4873–4881. doi: 10.2741/3046
  • Xie S, Chen XX, Qiao S, et al. Identification of the RNA pseudoknot within the 3′ end of the porcine reproductive and respiratory syndrome virus genome as a pathogen-associated molecular pattern to activate antiviral signaling via RIG-I and toll-like receptor 3. J Virol. 2018;92(12): doi: 10.1128/JVI.00097-18
  • Wutz G, Auer H, Nowotny N, et al. Equine rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses. J Gen Virol. 1996;77(Pt 8):1719–1730. doi: 10.1099/0022-1317-77-8-1719
  • Ward JC, Lasecka-Dykes L, Neil C, et al. The RNA pseudoknots in foot-and-mouth disease virus are dispensable for genome replication, but essential for the production of infectious virus. PLOS Pathog. 2022;18(6):e1010589. doi: 10.1371/journal.ppat.1010589
  • Liu F, Wang N, Wang Q, et al. Motif mutations in pseudoknot stem I upstream of start codon in senecavirus a genome: impacts on activity of viral IRES and on rescue of recombinant virus. Vet Microbiol. 2021;262:109223. doi:10.1016/j.vetmic.2021.109223
  • Gross L, Vicens Q, Einhorn E, et al. The IRES5′UTR of the dicistrovirus cricket paralysis virus is a type III IRES containing an essential pseudoknot structure. Nucleic Acids Res. 2017;45(15):8993–9004. doi: 10.1093/nar/gkx622
  • Escarmís C, Dopazo J, Dávila M, et al. Large deletions in the 5′-untranslated region of foot-and-mouth disease virus of serotype C. Virus Res. 1995;35(2):155–167. doi: 10.1016/0168-1702(94)00091-P
  • Mohapatra JK, Pawar SS, Tosh C, et al. Genetic characterization of vaccine and field strains of serotype a foot-and-mouth disease virus from India. Acta Virol. 2011;55(4):349–352. doi: 10.4149/av_2011_04_349
  • Martin LR, Palmenberg AC. Tandem mengovirus 5' pseudoknots are linked to viral RNA synthesis, not poly(C)-mediated virulence. J Virol. 1996;70(11):8182–8186. doi: 10.1128/jvi.70.11.8182-8186.1996
  • Haimov O, Sinvani H, Dikstein R. Cap-dependent, scanning-free translation initiation mechanisms. Biochim Biophys Acta. 2015;1849(11):1313–1318. doi: 10.1016/j.bbagrm.2015.09.006
  • Fraser CS. Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie. 2015;114:58–71. doi: 10.1016/j.biochi.2015.02.017
  • La Teana A, Benelli D, Londei P, et al. Translation initiation in the crenarchaeon sulfolobus solfataricus: eukaryotic features but bacterial route. Biochem Soc Trans. 2013;41(1):350–355. doi: 10.1042/BST20120300
  • Zhang H, Wang Y, Lu J. Function and evolution of upstream ORFs in Eukaryotes. Trends Biochem Sci. 2019;44(9):782–794. doi: 10.1016/j.tibs.2019.03.002
  • Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334(6180):320–325. doi: 10.1038/334320a0
  • Bailey JM, Tapprich WE. Structure of the 5′ nontranslated region of the coxsackievirus B3 genome: chemical modification and comparative sequence analysis. J Virol. 2007;81(2):650–668. doi: 10.1128/JVI.01327-06
  • Niepmann M. Internal translation initiation of picornaviruses and hepatitis C virus. Biochim Biophys Acta. 2009;1789(9–10):529–541. doi: 10.1016/j.bbagrm.2009.05.002
  • Gamarnik AV, Andino R. Interactions of viral protein 3CD and Poly(rC) binding protein with the 5′ untranslated region of the poliovirus genome. J Virol. 2000;74(5):2219–2226. doi: 10.1128/JVI.74.5.2219-2226.2000
  • Sweeney TR, Abaeva IS, Pestova TV, et al. The mechanism of translation initiation on Type 1 picornavirus IRESs. Embo J. 2014;33(1):76–92. doi: 10.1002/embj.201386124
  • Gosert R, Chang KH, Rijnbrand R, et al. Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites in vivo. Mol Cell Biol. 2000;20(5):1583–1595. doi: 10.1128/MCB.20.5.1583-1595.2000
  • Kolupaeva VG, Hellen CU, Shatsky IN. Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA. 1996;2(12):1199–1212.
  • Fernández-Miragall O, Martínez-Salas E. Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA. 2003;9(11):1333–1344. doi: 10.1261/rna.5950603
  • de Quinto S L, Martínez-Salas E. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA. 2000;6(10):1380–1392. doi: 10.1017/S1355838200000753
  • López de Quinto S, Lafuente E, Martínez-Salas E. IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA. 2001;7(9):1213–1226. doi: 10.1017/S1355838201010433
  • Pacheco A, López de Quinto S, Ramajo J, et al. A novel role for Gemin5 in mRNA translation. Nucleic Acids Res. 2009;37(2):582–590. doi: 10.1093/nar/gkn979
  • Luz N, Beck E. Interaction of a cellular 57-kilodalton protein with the internal translation initiation site of foot-and-mouth disease virus. J Virol. 1991;65(12):6486–6494. doi: 10.1128/jvi.65.12.6486-6494.1991
  • Andreev DE, Fernandez-Miragall O, Ramajo J, et al. Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA. RNA. 2007;13(8):1366–1374. doi: 10.1261/rna.469707
  • Cao X, Bergmann IE, Füllkrug R, et al. Functional analysis of the two alternative translation initiation sites of foot-and-mouth disease virus. J Virol. 1995;69(1):560–563. doi: 10.1128/jvi.69.1.560-563.1995
  • Pisarev AV, Chard LS, Kaku Y, et al. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol. 2004;78(9):4487–4497. doi: 10.1128/JVI.78.9.4487-4497.2004
  • Hellen CU, de Breyne S. A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. J Virol. 2007;81(11):5850–5863. doi: 10.1128/JVI.02403-06
  • Brown EA, Zhang H, Ping LH, et al. Secondary structure of the 5′ nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 1992;20(19):5041–5045. doi: 10.1093/nar/20.19.5041
  • Kieft JS, Zhou K, Jubin R, et al. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol. 1999;292(3):513–529. doi: 10.1006/jmbi.1999.3095
  • Rijnbrand RC, Lemon SM. Internal ribosome entry site-mediated translation in hepatitis C virus replication. Curr Top Microbiol Immunol. 2000;242:85–116.
  • Jubin R, Vantuno NE, Kieft JS, et al. Hepatitis C virus internal ribosome entry site (IRES) stem loop IIId contains a phylogenetically conserved GGG triplet essential for translation and IRES folding. J Virol. 2000;74(22):10430–10437. doi: 10.1128/JVI.74.22.10430-10437.2000
  • Psaridi L, Georgopoulou U, Varaklioti A, et al. Mutational analysis of a conserved tetraloop in the 5′ untranslated region of hepatitis C virus identifies a novel RNA element essential for the internal ribosome entry site function. FEBS Lett. 1999;453(1–2):49–53. doi: 10.1016/S0014-5793(99)00662-6
  • Ji H, Fraser CS, Yu Y, et al. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc Natl Acad Sci U S A. 2004;101(49):16990–16995. doi: 10.1073/pnas.0407402101
  • Andreev DE, Niepmann M, Shatsky IN. Elusive trans-acting factors which operate with Type I (Poliovirus-like) IRES elements. Int J Mol Sci. 2022;23(24):23. doi: 10.3390/ijms232415497
  • Kerr CH, Jan E, Pfeiffer J. Commandeering the ribosome: lessons learned from dicistroviruses about translation. J Virol. 2016;90(12):5538–5540. doi: 10.1128/JVI.00737-15
  • Schüler M, Connell SR, Lescoute A, et al. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol. 2006;13(12):1092–1096. doi: 10.1038/nsmb1177
  • Fernández IS, Bai XC, Murshudov G, et al. Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell. 2014;157(4):823–831. doi: 10.1016/j.cell.2014.04.015
  • Pfingsten JS, Costantino DA, Kieft JS. Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science. 2006;314(5804):1450–1454. doi: 10.1126/science.1133281
  • Wilson JE, Powell MJ, Hoover SE, et al. Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol. 2000;20(14):4990–4999. doi: 10.1128/MCB.20.14.4990-4999.2000
  • Meerovitch K, Pelletier J, Sonenberg N. A cellular protein that binds to the 5' -noncoding region of poliovirus RNA: implications for internal translation initiation. Genes Dev. 1989;3(7):1026–1034. doi: 10.1101/gad.3.7.1026
  • Meerovitch K, Svitkin YV, Lee HS, et al. La Autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol. 1993;67(7):3798–3807. doi: 10.1128/jvi.67.7.3798-3807.1993
  • Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet. 2016;135(8):851–867. doi: 10.1007/s00439-016-1683-5
  • Hellen CU, Wimmer E. Translation of encephalomyocarditis virus RNA by internal ribosomal entry. Curr Top Microbiol Immunol. 1995;203:31–63.
  • Kafasla P, Morgner N, Pöyry TA, et al. Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Mol Cell. 2009;34(5):556–568. doi: 10.1016/j.molcel.2009.04.015
  • Sun C, Liu M, Chang J, et al. Heterogeneous nuclear ribonucleoprotein l negatively regulates foot-and-mouth disease virus replication through inhibition of viral RNA synthesis by interacting with the internal ribosome entry site in the 5′ untranslated region. J Virol. 2020;94(10): doi: 10.1128/JVI.00282-20
  • Liu W, Yang D, Sun C, et al. hnRNP K is a novel internal ribosomal entry site-transacting factor that negatively regulates foot-and-mouth disease virus translation and replication and is antagonized by viral 3C protease. J Virol. 2020;94(17): doi: 10.1128/JVI.00803-20
  • Levengood JD, Tolbert M, Li ML, et al. High-affinity interaction of hnRNP A1 with conserved RNA structural elements is required for translation and replication of enterovirus 71. RNA Biol. 2013;10(7):1136–1145. doi: 10.4161/rna.25107
  • Tolbert M, Morgan CE, Pollum M, et al. HnRNP A1 alters the structure of a conserved enterovirus IRES domain to stimulate viral translation. J Mol Biol. 2017;429(19):2841–2858. doi: 10.1016/j.jmb.2017.06.007
  • Bedard KM, Daijogo S, Semler BL. A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. Embo J. 2007;26(2):459–467. doi: 10.1038/sj.emboj.7601494
  • Piñeiro D, Fernández N, Ramajo J, et al. Gemin5 promotes IRES interaction and translation control through its C-terminal region. Nucleic Acids Res. 2013;41(2):1017–1028. doi: 10.1093/nar/gks1212
  • Abdullah SW, Wu J, Zhang Y, et al. DDX21, a host restriction factor of FMDV IRES-dependent translation and replication. Viruses. 2021;13(9):1765. doi: 10.3390/v13091765
  • Han S, Wang X, Guan J, et al. Nucleolin promotes IRES-Driven translation of foot-and-mouth disease virus by supporting the assembly of translation initiation complexes. J Virol. 2021;95(13):e0023821. doi: 10.1128/JVI.00238-21
  • Bhattacharyya S, Das S. An apical GAGA loop within 5' UTR of the coxsackievirus B3 RNA maintains structural organization of the IRES element required for efficient ribosome entry. RNA Biol. 2006;3(2):60–68. doi: 10.4161/rna.3.2.2990
  • Molla A, Paul AV, Wimmer E. Cell-free, de novo synthesis of poliovirus. Science. 1991;254(5038):1647–1651. doi: 10.1126/science.1661029
  • Lyons T, Murray KE, Roberts AW, et al. Poliovirus 5′-terminal cloverleaf RNA is required in cis for VPg uridylylation and the initiation of negative-strand RNA synthesis. J Virol. 2001;75(22):10696–10708. doi: 10.1128/JVI.75.22.10696-10708.2001
  • Wang Z, Day N, Trifillis P, et al. An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol. 1999;19(7):4552–4560. doi: 10.1128/MCB.19.7.4552
  • Wang Z, Kiledjian M. The poly(A)-binding protein and an mRNA stability protein jointly regulate an endoribonuclease activity. Mol Cell Biol. 2000;20(17):6334–6341. doi: 10.1128/MCB.20.17.6334-6341.2000
  • Barton DJ, Morasco BJ, Flanegan JB. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J Virol. 1999;73(12):10104–10112. doi: 10.1128/JVI.73.12.10104-10112.1999
  • Andino R, Rieckhof GE, Baltimore D. A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell. 1990;63(2):369–380. doi: 10.1016/0092-8674(90)90170-J
  • Andino R, Rieckhof GE, Trono D, et al. Substitutions in the protease (3Cpro) gene of poliovirus can suppress a mutation in the 5' noncoding region. J Virol. 1990;64(2):607–612. doi: 10.1128/jvi.64.2.607-612.1990
  • Gamarnik AV, Andino R. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 1998;12(15):2293–2304. doi: 10.1101/gad.12.15.2293
  • Sharma N, O’ Donnell BJ, Flanegan JB. 3′-terminal sequence in poliovirus negative-strand templates is the primary cis -acting element required for VPgpUpU-Primed positive-strand initiation. J Virol. 2005;79(6):3565–3577. doi: 10.1128/JVI.79.6.3565-3577.2005
  • Verma B, Ponnuswamy A, Gnanasundram SV, et al. Cryptic AUG is important for 48S ribosomal assembly during internal initiation of translation of coxsackievirus B3 RNA. J Gen Virol. 2011;92(10):2310–2319. doi: 10.1099/vir.0.032151-0
  • Glenet M, Heng L, Callon D, et al. Structures and functions of viral 5' non-coding genomic RNA domain-I in Group-B enterovirus infections. Viruses. 2020;12(9):919. doi: 10.3390/v12090919
  • Badorff C, Lee GH, Lamphear BJ, et al. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med. 1999;5(3):320–326. doi: 10.1038/6543
  • Bouin A, Vu MN, Al-Hakeem A, et al. Enterovirus-cardiomyocyte interactions: impact of terminally deleted genomic RNAs on viral and host functions. J Virol. 2023;97(1):e0142622. doi: 10.1128/jvi.01426-22
  • Kauder SE, Racaniello VR. Poliovirus tropism and attenuation are determined after internal ribosome entry. J Clin Invest. 2004;113(12):1743–1753. doi: 10.1172/JCI200421323
  • Zhong Z, Li X, Zhao W, et al. Mutations at nucleotides 573 and 579 within 5′-untranslated region augment the virulence of coxsackievirus B1. Virus Res. 2008;135(2):255–259. doi: 10.1016/j.virusres.2008.04.012
  • Bandyopadhyay PK, Pritchard A, Jensen K, et al. A three-nucleotide insertion in the H stem-loop of the 5' untranslated region of Theiler’s virus attenuates neurovirulence. J Virol. 1993;67(6):3691–3695. doi: 10.1128/jvi.67.6.3691-3695.1993
  • Gromeier M, Bossert B, Arita M, et al. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol. 1999;73(2):958–964. doi: 10.1128/JVI.73.2.958-964.1999
  • De Jesus N, Franco D, Paul A, et al. Mutation of a single conserved nucleotide between the cloverleaf and internal ribosome entry site attenuates poliovirus neurovirulence. J Virol. 2005;79(22):14235–14243. doi: 10.1128/JVI.79.22.14235-14243.2005
  • Sun C, Yang D, Gao R, et al. Modification of the internal ribosome entry site element impairs the growth of foot-and-mouth disease virus in porcine-derived cells. J Gen Virol. 2016;97(4):901–911. doi: 10.1099/jgv.0.000406
  • Rodríguez-Pulido M, Borrego B, Sobrino F, et al. RNA structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice. J Virol. 2011;85(13):6492–6501. doi: 10.1128/JVI.00599-11
  • Borrego B, Rodríguez-Pulido M, Revilla C, et al. Synthetic RNAs mimicking structural domains in the foot-and-mouth disease virus genome elicit a broad innate immune response in porcine cells triggered by RIG-I and TLR activation. Viruses. 2015;7(7):3954–3973. doi: 10.3390/v7072807
  • Dobrikov MI, Dobrikova EY, McKay ZP, et al. PKR binds enterovirus IRESs, displaces host translation factors, and impairs viral translation to enable innate antiviral signaling. mBio. 2022;13(3):e0085422. doi: 10.1128/mbio.00854-22
  • Li R, Wang M, Gong P. Crystal structure of a pre-chemistry viral RNA-dependent RNA polymerase suggests participation of two basic residues in catalysis. Nucleic Acids Res. 2022;50(21):12389–12399. doi: 10.1093/nar/gkac1133
  • Smola MJ, Rice GM, Busan S, et al. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc. 2015;10(11):1643–1669. doi: 10.1038/nprot.2015.103