890
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Shared and organ-specific gene-expression programs during the development of the cochlea and the superior olivary complex

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 629-640 | Accepted 09 Aug 2023, Published online: 21 Aug 2023

References

  • Morton CC, Nance WE. Newborn hearing screening — a silent revolution. N Engl J Med. 2006;354(20):2151–2164. doi: 10.1056/NEJMra050700
  • Quaranta N, Coppola F, Casulli M, et al. The prevalence of peripheral and central hearing impairment and its relation to cognition in older adults. Audiol Neurootol. 2014;19 Suppl 1:10–14.
  • Haile LM, Kamenov K, Briant PS, et al. Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of disease study 2019. The Lancet. 2021;397(10278):996–1009. doi: 10.1016/S0140-6736(21)00516-X
  • Nance WE. The genetics of deafness. Ment Retard Dev Disabil Res Rev. 2003;9(2):109–119. doi: 10.1002/mrdd.10067
  • Abu Rayyan A, Kamal L, Casadei S, et al. Genomic analysis of inherited hearing loss in the Palestinian population. Proc Natl Acad Sci, USA. 2020;117(33):20070–20076. doi: 10.1073/pnas.2009628117
  • Brownstein Z, Gulsuner S, Walsh T, et al. Spectrum of genes for inherited hearing loss in the Israeli Jewish population, including the novel human deafness gene ATOH1. Clin Genet. 2020;98(4):353–364. doi: 10.1111/cge.13817
  • Shearer AE, Shen J, Amr S, et al. A proposal for comprehensive newborn hearing screening to improve identification of deaf and hard-of-hearing children. Genet Med. 2019;21(11):2614–2630. doi: 10.1038/s41436-019-0563-5
  • Pickles JO. Auditory pathways: anatomy and physiology. Handb Clin Neurol. 2015;129:3–25.
  • Grothe B, Pecka M, McAlpine D. Mechanisms of sound localization in mammals. Physiol Rev. 2010;90(3):983–1012. doi: 10.1152/physrev.00026.2009
  • Kopp-Scheinpflug C, Sinclair JL, Linden JF. When sound stops: offset responses in the auditory system. Trends Neurosci. 2018;41(10):712–728. doi: 10.1016/j.tins.2018.08.009
  • Frank MM, Goodrich LV. Talking back: development of the olivocochlear efferent system. Wiley Interdiscip Rev Dev Biol. 2018;7(6):e324. doi: 10.1002/wdev.324
  • Willaredt MA, Schluter T, Nothwang HG. The gene regulatory networks underlying formation of the auditory hindbrain. Cell Mol Life Sci. 2015;72(3):519–535. doi: 10.1007/s00018-014-1759-0
  • Whitfield TT. Development of the inner ear. Curr Opin Genet Dev. 2015;32:112–118. doi: 10.1016/j.gde.2015.02.006
  • Zine A, Fritzsch B. Early steps towards hearing: placodes and sensory development. Int J Mol Sci. 2023;24(8):24. doi: 10.3390/ijms24086994
  • Ehmann H, Hartwich H, Salzig C, et al. Time-dependent gene expression analysis of the developing superior olivary complex. J Biol Chem. 2013;288(36):25865–25879. doi: 10.1074/jbc.M113.490508
  • Michalski N, Petit C. Genes involved in the development and physiology of both the peripheral and central auditory systems. Annu Rev Neurosci. 2019;42(1):67–86. doi: 10.1146/annurev-neuro-070918-050428
  • Lewis MA, Quint E, Glazier AM, et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet. 2009;41(5):614–618. doi: 10.1038/ng.369
  • Mencia A, Modamio-Hoybjor S, Redshaw N, et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet. 2009;41(5):609–613. doi: 10.1038/ng.355
  • Schluter T, Berger C, Rosengauer E, et al. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet. 2018;27(5):860–874. doi: 10.1093/hmg/ddy007
  • Zolboot N, Du JX, Zampa F, et al. MicroRNAs instruct and maintain cell type diversity in the nervous system. Front Mol Neurosci. 2021;14:646072. doi:10.3389/fnmol.2021.646072
  • Friedman LM, Dror AA, Mor E, et al. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci, USA. 2009;106(19):7915–7920. doi: 10.1073/pnas.0812446106
  • Rosengauer E, Hartwich H, Hartmann AM, et al. Egr2: cre mediated conditional ablation of dicer disrupts histogenesis of mammalian central auditory nuclei. PLoS One. 2012;7(11):e49503. doi: 10.1371/journal.pone.0049503
  • Rudnicki A, Isakov O, Ushakov K, et al. Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRnas and defines regulatory pathways. BMC Genomics. 2014;15(1):484. doi: 10.1186/1471-2164-15-484
  • Krohs C, Bordeynik-Cohen M, Messika-Gold N, et al. Expression pattern of cochlear microRnas in the mammalian auditory hindbrain. Cell Tissue Res. 2021;383(2):655–666. doi: 10.1007/s00441-020-03290-x
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8
  • Hait TA, Maron-Katz A, Sagir D, et al. The EXPANDER integrated platform for transcriptome analysis. J Mol Biol. 2019;431(13):2398–2406. doi: 10.1016/j.jmb.2019.05.013
  • Wu T, Hu E, Xu S, et al. clusterProfiler 4.0:a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. doi: 10.1016/j.xinn.2021.100141
  • Babicki S, Arndt D, Marcu A, et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44(W1):W147–53. doi: 10.1093/nar/gkw419
  • Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. doi: 10.1186/gb-2009-10-3-r25
  • Fromm B, Hoye E, Domanska D, et al. MirGeneDB 2.1: toward a complete sampling of all major animal phyla. Nucleic Acids Res. 2022;50(D1):D204–D10. doi: 10.1093/nar/gkab1101
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRnas. Elife. 2015;4:4. doi:10.7554/eLife.05005
  • Groves AK, Fekete DM. Shaping sound in space: the regulation of inner ear patterning. Development. 2012;139(2):245–257. doi: 10.1242/dev.067074
  • Friauf E. Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats. J Comp Neurol. 1993;334(1):59–74. doi: 10.1002/cne.903340105
  • Lohmann C, Friauf E. Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J Comp Neurol. 1996;367(1):90–109. doi: 10.1002/(SICI)1096-9861(19960325)367:1<90:AID-CNE7>3.0.CO;2-E
  • Zhou L, Lim MYT, Kaur P, et al. Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. Elife. 2018;7: doi: 10.7554/eLife.38389
  • Scott DA, Drury S, Sundstrom RA, et al. Refining the DFNB7-DFNB11 deafness locus using intragenic polymorphisms in a novel gene, TMEM2. Gene. 2000;246(1–2):265–274. doi: 10.1016/s0378-1119(00)00090-1
  • Peixoto MC, Spratley J, Oliveira G, et al. Effectiveness of cochlear implants in children: long term results. Int J Pediatr Otorhinolaryngol. 2013;77:462–468. doi:10.1016/j.ijporl.2012.12.005
  • Sharma SD, Cushing SL, Papsin BC, et al. Hearing and speech benefits of cochlear implantation in children: a review of the literature. Int J Pediatr Otorhinolaryngol. 2020;133:109984.
  • Chadly DM, Best J, Ran C, et al. Developmental profiling of microRnas in the human embryonic inner ear. PLoS One. 2018;13(1):e0191452. doi: 10.1371/journal.pone.0191452
  • Kolla L, Kelly MC, Mann ZF, et al. Characterization of the development of the mouse cochlear epithelium at the single cell level. Nat Commun. 2020;11(1):2389. doi: 10.1038/s41467-020-16113-y
  • Saleh AJ, Nothwang HG. Differential expression of microRnas in the developing avian auditory hindbrain. J Comp Neurol. 2021;529(15):3477–3496. doi: 10.1002/cne.25205
  • Petitpre C, Faure L, Uhl P, et al. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun. 2022;13(1):3878. doi: 10.1038/s41467-022-31580-1
  • Freyer L, Aggarwal V, Morrow BE. Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development. 2011;138(24):5403–5414. doi: 10.1242/dev.069849
  • Mao Y, Reiprich S, Wegner M, et al. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One. 2014;9(4):e94580. doi: 10.1371/journal.pone.0094580
  • Nothwang HG. Evolution of mammalian sound localization circuits: a developmental perspective. Prog Neurobiol. 2016;141:1–24. doi: 10.1016/j.pneurobio.2016.02.003
  • Willaredt MA, Ebbers L, Nothwang HG. Central auditory function of deafness genes. Hear Res. 2014;312:9–20. doi: 10.1016/j.heares.2014.02.004
  • Elliott KL, Fritzsch B, Yamoah EN, et al. Age-related hearing loss: sensory and neural etiology and their interdependence. Front Aging Neurosci. 2022;14:814528. doi:10.3389/fnagi.2022.814528
  • Maricich SM, Xia A, Mathes EL, et al. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. J Neurosci. 2009;29(36):11123–11133. doi: 10.1523/JNEUROSCI.2232-09.2009
  • Chizhikov VV, Iskusnykh IY, Fattakhov N, et al. Lmx1a and Lmx1b are redundantly required for the development of multiple components of the mammalian auditory system. Neuroscience. 2021;452:247–264.
  • Elliott KL, Pavlinkova G, Chizhikov VV, et al. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev. 2021;10:47.
  • Filova I, Pysanenko K, Tavakoli M, et al. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci, USA. 2022;119(37):e2207433119. doi: 10.1073/pnas.2207433119
  • Munnamalai V, Fekete DM. Wnt signaling during cochlear development. Semin Cell Dev Biol. 2013;24(5):480–489. doi: 10.1016/j.semcdb.2013.03.008
  • Michalski N, Babai N, Renier N, et al. Robo3-driven axon midline crossing conditions functional maturation of a large commissural synapse. Neuron. 2013;78(5):855–868. doi: 10.1016/j.neuron.2013.04.006
  • Szeto IYY, Chu DKH, Chen P, et al. SOX9 and SOX10 control fluid homeostasis in the inner ear for hearing through independent and cooperative mechanisms. Proc Natl Acad Sci, USA. 2022;119(46):e2122121119. doi: 10.1073/pnas.2122121119
  • Keithley EM. Inner ear immunity. Hear Res. 2022;419:108518. doi: 10.1016/j.heares.2022.108518
  • Ebbers L, Satheesh SV, Janz K, et al. L-type calcium channel Cav1.2 is required for maintenance of auditory brainstem nuclei. J Biol Chem. 2015;290(39):23692–23710. doi: 10.1074/jbc.M115.672675
  • Satheesh SV, Kunert K, Ruttiger L, et al. Retrocochlear function of the peripheral deafness gene Cacna1d. Hum Mol Genet. 2012;21(17):3896–3909. doi: 10.1093/hmg/dds217
  • Stassart RM, Mobius W, Nave KA, et al. The axon-myelin unit in development and degenerative disease. Front Neurosci. 2018;12:467. doi:10.3389/fnins.2018.00467
  • Rietzel HJ, Friauf E. Neuron types in the rat lateral superior olive and developmental changes in the complexity of their dendritic arbors. J Comp Neurol. 1998;390(1):20–40. doi: 10.1002/(SICI)1096-9861(19980105)390:1<20:AID-CNE3>3.0.CO;2-S
  • Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865–3877. doi: 10.1093/nar/gkw116
  • Ghosh T, Aprea J, Nardelli J, et al. MicroRNAs establish robustness and adaptability of a critical gene network to regulate progenitor fate decisions during cortical neurogenesis. Cell Rep. 2014;7(6):1779–1788. doi: 10.1016/j.celrep.2014.05.029
  • Feng Y, Duan C, Luo Z, et al. Silencing miR-20a-5p inhibits axonal growth and neuronal branching and prevents epileptogenesis through RGMa-RhoA-mediated synaptic plasticity. J Cell Mol Med. 2020;24(18):10573–10588. doi: 10.1111/jcmm.15677
  • Tarang S, Pyakurel U, Weston MD, et al. Spatiotemporally controlled overexpression of cyclin D1 triggers generation of supernumerary cells in the postnatal mouse inner ear. Hear Res. 2020;390:107951. doi:10.1016/j.heares.2020.107951
  • Anttonen T, Belevich I, Laos M, et al. Cytoskeletal stability in the auditory organ in vivo: RhoA is dispensable for wound healing but essential for hair cell development. eNeuro. 2017;4(5):4. doi: 10.1523/ENEURO.0149-17.2017
  • Tsonis PA, Call MK, Grogg MW, et al. MicroRNAs and regeneration: Let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt. Biochem Biophys Res Commun. 2007;362(4):940–945. doi: 10.1016/j.bbrc.2007.08.077
  • Evsen L, Li X, Zhang S, et al. Let-7 miRnas inhibit CHD7 expression and control auditory-sensory progenitor cell behavior in the developing inner ear. Development. 2020;147(15):147. doi: 10.1242/dev.183384
  • Ohlemiller KK, Jones SM, Johnson KR. Application of mouse models to research in hearing and balance. J Assoc Res Otolaryngol. 2016;17(6):493–523. doi: 10.1007/s10162-016-0589-1
  • Taiber S, Gwilliam K, Hertzano R, et al. The genomics of auditory function and disease. Annu Rev Genomics Hum Genet. 2022;23(1):275–299. doi: 10.1146/annurev-genom-121321-094136
  • Tona R, Lopez IA, Fenollar-Ferrer C, et al. Mouse models of human pathogenic variants of TBC1D24 associated with non-syndromic deafness DFNB86 and DFNA65 and syndromes involving deafness. Genes (Basel). 2020;11(10):11. doi: 10.3390/genes11101122