1,104
Views
0
CrossRef citations to date
0
Altmetric
Review

Diverse roles of biomolecular condensation in eukaryotic translational regulation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 893-907 | Accepted 20 Oct 2023, Published online: 31 Oct 2023

References

  • Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285–298. doi: 10.1038/nrm.2017.7
  • Alberti S, Dormann D. Liquid–Liquid Phase Separation in Disease. Ann Rev Genet. 2019;53(1):171–194. doi: 10.1146/annurev-genet-112618-043527
  • Boeynaems S, Alberti S, Fawzi NL, et al. Protein phase separation: a new phase in Cell Biology. Trends Cell Biol. 2018;28(6):420–435. doi: 10.1016/j.tcb.2018.02.004
  • Hyman AA, Weber CA, Julicher F. Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol. 2014;30(1):39–58. doi: 10.1146/annurev-cellbio-100913-013325
  • Alberti S, Hyman AA. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol. 2021;22(3):196–213. doi: 10.1038/s41580-020-00326-6
  • Banani SF, Rice AM, Peeples WB, et al. Compositional control of phase-separated cellular bodies. Cell. 2016;166(3):651–663. doi: 10.1016/j.cell.2016.06.010
  • Patel A, Lee HO, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 2015;162(5):1066–1077. doi: 10.1016/j.cell.2015.07.047
  • Nott TJ, Petsalaki E, Farber P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell. 2015;57(5):936–947. doi: 10.1016/j.molcel.2015.01.013
  • Martin EW, Mittag T. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry. 2018;57(17):2478–2487. doi: 10.1021/acs.biochem.8b00008
  • Molliex A, Temirov J, Lee J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell. 2015;163(1):123–133. doi: 10.1016/j.cell.2015.09.015
  • Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol. 2021;22(3):183–195. doi: 10.1038/s41580-020-0264-6
  • Bienz M. Head-to-tail polymerization in the assembly of biomolecular condensates. Cell. 2020;182(4):799–811. doi: 10.1016/j.cell.2020.07.037
  • Boija A, Klein IA, Young RA. Biomolecular Condensates and Cancer. Cancer Cell. 2021;39(2):174–192. doi: 10.1016/j.ccell.2020.12.003
  • Thomas L, Putnam A, Folkmann A. Germ granules in development. Development. 2023;150(2). doi: 10.1242/dev.201037
  • Formicola N, Vijayakumar J, Besse F. Neuronal ribonucleoprotein granules: Dynamic sensors of localized signals. Traffic. 2019;20(9):639–649. doi: 10.1111/tra.12672
  • Spriggs KA, Bushell M, Willis AE. Translational regulation of gene expression during conditions of cell stress. Mol Cell. 2010;40(2):228–237. doi: 10.1016/j.molcel.2010.09.028
  • Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731–745. doi: 10.1016/j.cell.2009.01.042
  • Protter DSW, Parker R. Principles and properties of stress granules. Trends Cell Biol. 2016;26(9):668–679. doi: 10.1016/j.tcb.2016.05.004
  • Standart N, Weil D. P-Bodies: cytosolic droplets for coordinated mRNA storage. Trends Genet. 2018;34(8):612–626. doi: 10.1016/j.tig.2018.05.005
  • Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357(6357). doi: 10.1126/science.aaf4382
  • Shorter J. Phase separation of RNA-binding proteins in physiology and disease: an introduction to the JBC reviews thematic series. J Biol Chem. 2019;294(18):7113–7114. doi: 10.1074/jbc.REV119.007944
  • Snead WT, Gladfelter AS. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. Mol Cell. 2019;76(2):295–305. doi: 10.1016/j.molcel.2019.09.016
  • Parker DM, Winkenbach LP, Osborne Nishimura E. It’s just a phase: exploring the relationship between mRNA, biomolecular condensates, and translational control. Front Genet. 2022;13:931220. doi: 10.3389/fgene.2022.931220
  • Sassone-Corsi P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science. 2002;296(5576):2176–2178. doi: 10.1126/science.1070963
  • Kang JY, Wen Z, Pan D, et al. LLPS of FXR1 drives spermiogenesis by activating translation of stored mRnas. Science. 2022;377(6607):eabj6647. doi: 10.1126/science.abj6647
  • Dai P, Wang X, Gou LT, et al. A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell. 2019;179(7):1566–1581 e16. doi: 10.1016/j.cell.2019.11.022
  • Majumder M, Johnson RH, Palanisamy V. Fragile X-related protein family: a double-edged sword in neurodevelopmental disorders and cancer. Crit Rev Biochem Mol Biol. 2020;55(5):409–424. doi: 10.1080/10409238.2020.1810621
  • Truesdell SS, Mortensen RD, Seo M, et al. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep. 2012;2(1):842. doi: 10.1038/srep00842
  • Mortensen RD, Serra M, Steitz JA, et al. Posttranscriptional activation of gene expression in xenopus laevis oocytes by microRNA-protein complexes (microRnps). Proc Natl Acad Sci U S A. 2011;108(20):8281–8286. doi: 10.1073/pnas.1105401108
  • Gessert S, Bugner V, Tecza A, et al. FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development. Dev Biol. 2010;341(1):222–235. doi: 10.1016/j.ydbio.2010.02.031
  • Khandjian EW, Bardoni B, Corbin F, et al. Novel isoforms of the fragile X related protein FXR1P are expressed during myogenesis. Hum Mol Genet. 1998;7(13):2121–2128. doi: 10.1093/hmg/7.13.2121
  • Davidovic L, Durand N, Khalfallah O, et al. A novel role for the RNA-binding protein FXR1P in myoblasts cell-cycle progression by modulating p21/Cdkn1a/Cip1/Waf1 mRNA stability. PLoS Genet. 2013;9(3):e1003367. doi: 10.1371/journal.pgen.1003367
  • Patzlaff NE, Nemec KM, Malone SG, et al. Fragile X related protein 1 (FXR1P) regulates proliferation of adult neural stem cells. Hum Mol Genet. 2017;26(7):1340–1352. doi: 10.1093/hmg/ddx034
  • Kotaja N, Sassone-Corsi P. The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol Cell Biol. 2007;8(1):85–90. doi: 10.1038/nrm2081
  • Dodson AE, Kennedy S. Phase separation in germ cells and development. Dev Cell. 2020;55(1):4–17. doi: 10.1016/j.devcel.2020.09.004
  • Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell. 2019;176(3):419–434. doi: 10.1016/j.cell.2018.12.035
  • Vasudevan S, Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell. 2007;128(6):1105–1118. doi: 10.1016/j.cell.2007.01.038
  • Greenblatt EJ, Spradling AC. Fragile X mental retardation 1 gene enhances the translation of large autism-related proteins. Science. 2018;361(6403):709–712. doi: 10.1126/science.aas9963
  • Tsang B, Arsenault J, Vernon RM, et al. Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc Natl Acad Sci U S A. 2019;116(10):4218–4227. doi: 10.1073/pnas.1814385116
  • Kim TH, Tsang B, Vernon RM, et al. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science. 2019;365(6455):825–829. doi: 10.1126/science.aax4240
  • Krichevsky AM, Kosik KS. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron. 2001;32(4):683–696. doi: 10.1016/S0896-6273(01)00508-6
  • Jung H, Gkogkas CG, Sonenberg N, et al. Remote control of gene function by local translation. Cell. 2014;157(1):26–40. doi: 10.1016/j.cell.2014.03.005
  • Buxbaum AR, Wu B, Singer RH. Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science. 2014;343(6169):419–422. doi: 10.1126/science.1242939
  • Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. 2012;7(1):219–245. doi: 10.1146/annurev-pathol-011811-132457
  • El Fatimy R, Davidovic L, Tremblay S, et al. Tracking the fragile X mental retardation protein in a highly ordered neuronal RiboNucleoParticles population: a link between stalled polyribosomes and RNA granules. PLoS Genet. 2016;12(7):e1006192. doi: 10.1371/journal.pgen.1006192
  • Zhou LT, Ye SH, Yang HX, et al. A novel role of fragile X mental retardation protein in pre-mRNA alternative splicing through RNA-binding protein 14. Neuroscience. 2017;349:64–75. doi: 10.1016/j.neuroscience.2017.02.044
  • Kao DI, Aldridge GM, Weiler IJ, et al. Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc Natl Acad Sci U S A. 2010;107(35):15601–15606. doi: 10.1073/pnas.1010564107
  • Kiebler MA, Bassell GJ. Neuronal RNA granules: movers and makers. Neuron. 2006;51(6):685–690. doi: 10.1016/j.neuron.2006.08.021
  • Costa-Mattioli M, Sossin WS, Klann E, et al. Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009;61(1):10–26. doi: 10.1016/j.neuron.2008.10.055
  • De Rubeis S, Bagni C. Fragile X mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability. Mol Cell Neurosci. 2010;43(1):43–50. doi: 10.1016/j.mcn.2009.09.013
  • Darnell JC, Van Driesche SJ, Zhang C, et al. FMRP stalls ribosomal translocation on mRnas linked to synaptic function and autism. Cell. 2011;146(2):247–261. doi: 10.1016/j.cell.2011.06.013
  • Ceman S, O’Donnell WT, Reed M, et al. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum Mol Genet. 2003;12(24):3295–3305. doi: 10.1093/hmg/ddg350
  • Narayanan U, Nalavadi V, Nakamoto M, et al. FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGlur and mediated by PP2A. J Neurosci. 2007;27(52):14349–14357. doi: 10.1523/JNEUROSCI.2969-07.2007
  • Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16(10):595–605. doi: 10.1038/nrn4001
  • Narayanan U, Nalavadi V, Nakamoto M, et al. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J Biol Chem. 2008;283(27):18478–18482. doi: 10.1074/jbc.C800055200
  • Bartley CM, O’Keefe RA, Blice-Baum A, et al. Mammalian FMRP S499 is phosphorylated by CK2 and promotes secondary phosphorylation of FMRP. eNeuro. 2016;3(6):ENEURO.0092–16.2016. doi: 10.1523/ENEURO.0092-16.2016
  • Nakayama K, Ohashi R, Shinoda Y, et al. RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation. Elife. 2017;6:6. doi: 10.7554/eLife.29677
  • Solomon S, Xu Y, Wang B, et al. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRnas. Mol Cell Biol. 2007;27(6):2324–2342. doi: 10.1128/MCB.02300-06
  • Hornbeck PV, Zhang B, Murray B, et al. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43(Database issue):D512–20. doi: 10.1093/nar/gku1267
  • Siomi MC, Higashijima K, Ishizuka A, et al. Casein kinase II phosphorylates the fragile X mental retardation protein and modulates its biological properties. Mol Cell Biol. 2002;22(24):8438–8447. doi: 10.1128/MCB.22.24.8438-8447.2002
  • Panas MD, Ivanov P, Anderson P. Mechanistic insights into mammalian stress granule dynamics. J Cell Bio. 2016;215(3):313–323. doi: 10.1083/jcb.201609081
  • Anderson P, Kedersha N. Stress granules. Curr Biol. 2009;19(10):R397–8. doi: 10.1016/j.cub.2009.03.013
  • Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009;36(6):932–941. doi: 10.1016/j.molcel.2009.11.020
  • Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci. 2013;38(10):494–506. doi: 10.1016/j.tibs.2013.07.004
  • Kedersha N, Stoecklin G, Ayodele M, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Bio. 2005;169(6):871–884. doi: 10.1083/jcb.200502088
  • Hilliker A, Gao Z, Jankowsky E, et al. The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Mol Cell. 2011;43(6):962–972. doi: 10.1016/j.molcel.2011.08.008
  • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–293. doi: 10.1016/j.cell.2012.03.017
  • Arimoto K, Fukuda H, Imajoh-Ohmi S, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol. 2008;10(11):1324–1332. doi: 10.1038/ncb1791
  • Pietras P, Aulas A, Fay MM, et al. Translation inhibition and suppression of stress granules formation by cisplatin. Biomed Pharmacother. 2022;145:112382. doi: 10.1016/j.biopha.2021.112382
  • Yang P, Mathieu C, Kolaitis RM, et al. G3BP1 is a Tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181(2):325–345 e28. doi: 10.1016/j.cell.2020.03.046
  • Sanders DW, Kedersha N, Lee DSW, et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell. 2020;181(2):306–324 e28. doi: 10.1016/j.cell.2020.03.050
  • Guillen-Boixet J, Kopach A, Holehouse AS, et al. RNA-Induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell. 2020;181(2):346–361 e17. doi: 10.1016/j.cell.2020.03.049
  • Cirillo L, Cieren A, Barbieri S, et al. UBAP2L forms distinct cores that act in nucleating stress granules upstream of G3BP1. Curr Biol. 2020;30(4):698–707 e6. doi: 10.1016/j.cub.2019.12.020
  • Arimoto-Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun. 2016;7(1):10252. doi: 10.1038/ncomms10252
  • Kedersha N, Chen S, Gilks N, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell. 2002;13(1):195–210. doi: 10.1091/mbc.01-05-0221
  • Guenther UP, Weinberg DE, Zubradt MM, et al. The helicase Ded1p controls use of near-cognate translation initiation codons in 5’ UTRs. Nature. 2018;559(7712):130–134. doi: 10.1038/s41586-018-0258-0
  • Sen ND, Zhou F, Harris MS, et al. eIF4B stimulates translation of long mRnas with structured 5’ UTRs and low closed-loop potential but weak dependence on eIF4G. Proc Natl Acad Sci U S A. 2016;113(38):10464–10472. doi: 10.1073/pnas.1612398113
  • Iserman C, Desroches Altamirano C, Jegers C, et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell. 2020;181(4):818–831 e19. doi: 10.1016/j.cell.2020.04.009
  • Mateju D, Eichenberger B, Voigt F, et al. Single-molecule imaging reveals translation of mRnas localized to stress granules. Cell. 2020;183(7):1801–1812 e13. doi: 10.1016/j.cell.2020.11.010
  • Jain S, Wheeler JR, Walters RW, et al. ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure. Cell. 2016;164(3):487–498. doi: 10.1016/j.cell.2015.12.038
  • Ramaswami M, Taylor JP, Parker R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell. 2013;154(4):727–736. doi: 10.1016/j.cell.2013.07.038
  • Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci. 2019;20(11):649–666. doi: 10.1038/s41583-019-0222-5
  • Moore MJ. From birth to death: the complex lives of eukaryotic mRnas. Science. 2005;309(5740):1514–1518. doi: 10.1126/science.1111443
  • Dormann D, Haass C. TDP-43 and FUS: a nuclear affair. Trends Neurosci. 2011;34(7):339–348. doi: 10.1016/j.tins.2011.05.002
  • Mann JR, Gleixner AM, Mauna JC, et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron. 2019;102(2):321–338 e8. doi: 10.1016/j.neuron.2019.01.048
  • Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–1211. doi: 10.1126/science.1165942
  • Kwiatkowski TJ Jr., Bosco DA, Leclerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–1208. doi: 10.1126/science.1166066
  • Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495(7442):467–473. doi: 10.1038/nature11922
  • Kamelgarn M, Chen J, Kuang L, et al. ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay. Proc Natl Acad Sci U S A. 2018;115(51):E11904–E11913. doi: 10.1073/pnas.1810413115
  • Birsa N, Ule AM, Garone MG, et al. FUS-ALS mutants alter FMRP phase separation equilibrium and impair protein translation. Sci Adv. 2021;7(30). doi: 10.1126/sciadv.abf8660
  • Gui X, Luo F, Li Y, et al. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat Commun. 2019;10(1):2006. doi: 10.1038/s41467-019-09902-7
  • Cui Q, Bi H, Lv Z, et al. Diverse CMT2 neuropathies are linked to aberrant G3BP interactions in stress granules. Cell. 2023;186(4):803–820 e25. doi: 10.1016/j.cell.2022.12.046
  • Smeyers J, Banchi EG, Latouche M. C9ORF72: what it is, what it does, and why it matters. Front Cell Neurosci. 2021;15:661447. doi: 10.3389/fncel.2021.661447
  • Lee KH, Zhang P, Kim HJ, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell. 2016;167(3):774–788 e17. doi: 10.1016/j.cell.2016.10.002
  • Boeynaems S, Bogaert E, Kovacs D, et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol Cell. 2017;65(6):1044–1055 e5. doi: 10.1016/j.molcel.2017.02.013
  • Quesnel-Vallieres M, Weatheritt RJ, Cordes SP, et al. Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet. 2019;20(1):51–63. doi: 10.1038/s41576-018-0066-2
  • Dergai M, Tsyba L, Dergai O, et al. Microexon-based regulation of ITSN1 and src SH3 domains specificity relies on introduction of charged amino acids into the interaction interface. Biochem Biophys Res Commun. 2010;399(2):307–312. doi: 10.1016/j.bbrc.2010.07.080
  • Quesnel-Vallieres M, Dargaei Z, Irimia M, et al. Misregulation of an activity-dependent splicing network as a common mechanism underlying autism spectrum disorders. Mol Cell. 2016;64(6):1023–1034. doi: 10.1016/j.molcel.2016.11.033
  • Irimia M, Weatheritt RJ, Ellis JD, et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159(7):1511–1523. doi: 10.1016/j.cell.2014.11.035
  • Borrie SC, Brems H, Legius E, et al. Cognitive dysfunctions in intellectual disabilities: the contributions of the ras-MAPK and PI3K-AKT-mTOR pathways. Annu Rev Genomics Hum Genet. 2017;18(1):115–142. doi: 10.1146/annurev-genom-091416-035332
  • Gonatopoulos-Pournatzis T, Niibori R, Salter EW, et al. Autism-misregulated eIF4G microexons control synaptic translation and higher order cognitive functions. Mol Cell. 2020;77(6):1176–1192 e16. doi: 10.1016/j.molcel.2020.01.006
  • Kim HJ, Raphael AR, LaDow ES, et al. Therapeutic modulation of eIf2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet. 2014;46(2):152–160. doi: 10.1038/ng.2853
  • Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology. 2013;436(2):255–267. doi: 10.1016/j.virol.2012.11.017
  • Emara MM, Brinton MA. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci U S A. 2007;104(21):9041–9046. doi: 10.1073/pnas.0703348104
  • White JP, Cardenas AM, Marissen WE, et al. Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe. 2007;2(5):295–305. doi: 10.1016/j.chom.2007.08.006
  • Corbet GA, Parker R. RNP Granule Formation: Lessons from P-Bodies and Stress Granules. Cold Spring Harb Symp Quant Biol. 2019;84:203–215. doi: 10.1101/sqb.2019.84.040329
  • Ivanov P, Kedersha N, Anderson P. Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol. 2019;11(5):a032813. doi: 10.1101/cshperspect.a032813
  • Zhang B, Herman PK. It is all about the process(ing): P-body granules and the regulation of signal transduction. Curr Genet. 2020;66(1):73–77. doi: 10.1007/s00294-019-01016-3
  • Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell. 2007;25(5):635–646. doi: 10.1016/j.molcel.2007.02.011
  • Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol. 2012;4(9):a012286. doi: 10.1101/cshperspect.a012286
  • Luo Y, Na Z, Slavoff SA. P-Bodies: composition, properties, and functions. Biochemistry. 2018;57(17):2424–2431. doi: 10.1021/acs.biochem.7b01162
  • Nishimura T, Fakim H, Brandmann T, et al. Human MARF1 is an endoribonuclease that interacts with the DCP1: 2 decapping complex and degrades target mRnas. Nucleic Acids Res. 2018;46(22):12008–12021. doi: 10.1093/nar/gky1011
  • Brothers WR, Fakim H, Kajjo S, et al. P-bodies directly regulate MARF1-mediated mRNA decay in human cells. Nucleic Acids Res. 2022;50(13):7623–7636. doi: 10.1093/nar/gkac557
  • Zhu L, Kandasamy SK, Liao SE, et al. LOTUS domain protein MARF1 binds CCR4-NOT deadenylase complex to post-transcriptionally regulate gene expression in oocytes. Nat Commun. 2018;9(1):4031. doi: 10.1038/s41467-018-06404-w
  • Su YQ, Sugiura K, Sun F, et al. MARF1 regulates essential oogenic processes in mice. Science. 2012;335(6075):1496–1499. doi: 10.1126/science.1214680
  • Kanemitsu Y, Fujitani M, Fujita Y, et al. The RNA-binding protein MARF1 promotes cortical neurogenesis through its RNase activity domain. Sci Rep. 2017;7(1):1155. doi: 10.1038/s41598-017-01317-y
  • Su YQ, Sun F, Handel MA, et al. Meiosis arrest female 1 (MARF1) has nuage-like function in mammalian oocytes. Proc Natl Acad Sci U S A. 2012;109(46):18653–18660. doi: 10.1073/pnas.1216904109
  • Yao Q, Cao G, Li M, et al. Ribonuclease activity of MARF1 controls oocyte RNA homeostasis and genome integrity in mice. Proc Natl Acad Sci U S A. 2018;115(44):11250–11255. doi: 10.1073/pnas.1809744115
  • Ayache J, Benard M, Ernoult-Lange M, et al. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol Biol Cell. 2015;26(14):2579–2595. doi: 10.1091/mbc.E15-03-0136
  • Hubstenberger A, Courel M, Benard M, et al. P-Body purification reveals the condensation of repressed mRNA regulons. Mol Cell. 2017;68(1):144–157 e5. doi: 10.1016/j.molcel.2017.09.003
  • Cary GA, Vinh DB, May P, et al. Proteomic analysis of Dhh1 complexes reveals a role for Hsp40 chaperone Ydj1 in yeast P-Body assembly. G3 (Bethesda). 2015;5(11):2497–2511. doi: 10.1534/g3.115.021444
  • Jonas S, Izaurralde E. The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev. 2013;27(24):2628–2641. doi: 10.1101/gad.227843.113
  • Andrei MA, Ingelfinger D, Heintzmann R, et al. A role for eIF4E and eIF4E-transporter in targeting mRnps to mammalian processing bodies. RNA. 2005;11(5):717–727. doi: 10.1261/rna.2340405
  • Kroschwald S, Maharana S, Mateju D, et al. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. Elife. 2015;4:e06807. doi: 10.7554/eLife.06807
  • Pitchiaya S, Mourao MDA, Jalihal AP, et al. Dynamic recruitment of single RNAs to processing bodies depends on RNA functionality. Mol Cell. 2019;74(3):521–533 e6. doi: 10.1016/j.molcel.2019.03.001
  • Cheng S, Altmeppen G, So C, et al. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science. 2022;378(6617):eabq4835. doi: 10.1126/science.abq4835
  • Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell. 2017;42(4):316–332. doi: 10.1016/j.devcel.2017.07.026
  • Li L, Zheng P, Dean J. Maternal control of early mouse development. Development. 2010;137(6):859–870. doi: 10.1242/dev.039487
  • Shi B, Heng J, Zhou JY, et al. Phase separation of Ddx3xb helicase regulates maternal-to-zygotic transition in zebrafish. Cell Res. 2022;32(8):715–728. doi: 10.1038/s41422-022-00655-5
  • Ma W, Mayr C. A Membraneless Organelle Associated with the Endoplasmic Reticulum Enables 3‘UTR-Mediated Protein-Protein Interactions. Cell. 2018;175(6):1492–1506 e19. doi: 10.1016/j.cell.2018.10.007
  • Ma W, Zhen G, Xie W, et al. In vivo reconstitution finds multivalent RNA–RNA interactions as drivers of mesh-like condensates. Elife. 2021;10:10. doi: 10.7554/eLife.64252
  • Ries RJ, Zaccara S, Klein P, et al. m(6)A enhances the phase separation potential of mRNA. Nature. 2019;571(7765):424–428. doi: 10.1038/s41586-019-1374-1
  • Gao Y, Pei G, Li D, et al. Multivalent m(6)A motifs promote phase separation of YTHDF proteins. Cell Res. 2019;29(9):767–769. doi: 10.1038/s41422-019-0210-3
  • Fu Y, Zhuang X. m(6)A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol. 2020;16(9):955–963. doi: 10.1038/s41589-020-0524-y
  • Cheng Y, Xie W, Pickering BF, et al. N(6)-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell. 2021;39(7):958–972 e8. doi: 10.1016/j.ccell.2021.04.017
  • Zhao Z, Qing Y, Dong L, et al. QKI shuttles internal m(7)G-modified transcripts into stress granules and modulates mRNA metabolism. Cell. 2023;186(15):3208–3226 e27. doi: 10.1016/j.cell.2023.05.047
  • Dutagaci B, Nawrocki G, Goodluck J, et al. Charge-driven condensation of RNA and proteins suggests broad role of phase separation in cytoplasmic environments. Elife. 2021;10:10. doi: 10.7554/eLife.64004
  • Klein IA, Boija A, Afeyan LK, et al. Partitioning of cancer therapeutics in nuclear condensates. Science. 2020;368(6497):1386–1392. doi: 10.1126/science.aaz4427
  • Mitrea DM, Mittasch M, Gomes BF, et al. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov. 2022;21(11):841–862. doi: 10.1038/s41573-022-00505-4