531
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

MiRNAs differentially expressed in vegetative and reproductive organs of Marchantia polymorpha – insights into their expression pattern, gene structures and function

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-12 | Accepted 05 Jan 2024, Published online: 01 Feb 2024

References

  • Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57(1):19–53. doi: 10.1146/annurev.arplant.57.032905.105218
  • Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25(1):21–44. doi: 10.1146/annurev.cellbio.042308.113417
  • Luo Y, Guo Z, Li L. Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biology. 2013;380(2):133–144. doi: 10.1016/j.ydbio.2013.05.009
  • Spanudakis E, Jackson S. The role of microRnas in the control of flowering time. J Exp Bot. 2014;65(2):365–380. doi: 10.1093/jxb/ert453
  • Hong Y, Jackson S. Floral induction and flower formation–the role and potential applications of miRnas. Plant Biotechnol J. 2015;13(3):282–292. doi: 10.1111/pbi.12340
  • Liu H, Yu H, Tang G, et al. Small but powerful: function of microRnas in plant development. Plant Cell Rep. 2018;37(3):515–528. doi: 10.1007/s00299-017-2246-5
  • Xie ZX, Allen E, Fahlgren N, et al. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138(4):2145–2154. doi: 10.1104/pp.105.062943
  • Stepien A, Knop K, Dolata J, et al. Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdiscip Rev RNA. 2017;8(3). doi: 10.1002/wrna.1403
  • Wang J, Mei J, Ren G. Plant microRNAs: Biogenesis, Homeostasis, and Degradation. Front Plant Sci. 2019;10:360. doi: 10.3389/fpls.2019.00360
  • Chen X. MicroRNA biogenesis and function in plants. FEBS Lett. 2005;579(26):5923–5931. doi: 10.1016/j.febslet.2005.07.071
  • Bologna NG, Mateos JL, Bresso EG, et al. A loop-to-base processing mechanism underlies the biogenesis of plant microRnas miR319 and miR159. EMBO J. 2009;28(23):3646–3656. doi: 10.1038/emboj.2009.292
  • Cuperus JT, Carbonell A, Fahlgren N, et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol. 2010;17(8):997–1003. doi: 10.1038/nsmb.1866
  • Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRnas. Plant Cell. 2013;25(7):2383–2399. doi: 10.1105/tpc.113.113159
  • Dolata J, Taube M, Bajczyk M, et al. Regulation of plant microprocessor function in shaping microRNA landscape. Front Plant Sci. 2018;9:753. doi: 10.3389/fpls.2018.00753
  • Bologna NG, Iselin R, Abriata LA, et al. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol Cell. 2018;69(4):709–719 e705. doi: 10.1016/j.molcel.2018.01.007
  • Zhu C, Liu JH, Zhao JH, et al. A fungal effector suppresses the nuclear export of AGO1–miRNA complex to promote infection in plants. Proc Natl Acad Sci U S A. 2022;119(12):e2114583119. doi: 10.1073/pnas.2114583119
  • Bielewicz D, Kalak M, Kalyna M, et al. Introns of plant pri-miRNAs enhance miRNA biogenesis. EMBO Rep. 2013;14(7):622–628. doi: 10.1038/embor.2013.62
  • Li M, Yu B. Recent advances in the regulation of plant miRNA biogenesis. RNA Biol. 2021;18(12):2087–2096. doi: 10.1080/15476286.2021.1899491
  • Gonzalo L, Tossolini I, Gulanicz T, et al. R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRnas in plants. Nat Plants. 2022;8(4):402–418. doi: 10.1038/s41477-022-01125-x
  • Zhang L, Xiang Y, Chen S, et al. Mechanisms of microRNA biogenesis and stability control in plants. Front Plant Sci. 2022a;13:844149. doi: 10.3389/fpls.2022.844149
  • Bajczyk M, Jarmolowski A, Jozwiak M, et al. Recent insights into plant miRNA biogenesis: multiple layers of miRNA level regulation. Plants (Basel). 2023;12(2):342. doi: 10.3390/plants12020342
  • Xu Y, Chen X. microRNA biogenesis and stabilization in plants. Fundamental Research. 2023;3(5):707–717. doi: 10.1016/j.fmre.2023.02.023
  • Bowman JL, Kohchi T, Yamato KT, et al. Insights into land plant evolution garnered from the marchantia polymorpha genome. Cell. 2017;171(2):287±. doi: 10.1016/j.cell.2017.09.030
  • Pietrykowska H, Sierocka I, Zielezinski A, et al. Biogenesis, conservation, and function of miRNA in liverworts. J Exp Bot. 2022;73(13):4528–4545. doi: 10.1093/jxb/erac098
  • Fahlgren N, Montgomery TA, Howell MD, et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol. 2006;16(9):939–944. doi: 10.1016/j.cub.2006.03.065
  • Palatnik JF, Wollmann H, Schommer C, et al. Sequence and expression differences underlie functional specialization of Arabidopsis microRnas miR159 and miR319. Dev Cell. 2007;13(1):115–125. doi: 10.1016/j.devcel.2007.04.012
  • Yamaguchi A, Wu MF, Yang L, et al. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell. 2009;17(2):268–278. doi: 10.1016/j.devcel.2009.06.007
  • Liu J, Vance CP. Crucial roles of sucrose and microRNA399 in systemic signaling of P deficiency: a tale of two team players? Plant Signal Behav. 2010;5(12):1556–1560. doi: 10.4161/psb.5.12.13293
  • Nag A, Jack T. Sculpting the flower; the role of microRnas in flower development. Curr Top Dev Biol. 2010;91:349–378. doi: 10.1016/S0070-2153(10)91012-0
  • Samad AFA, Sajad M, Nazaruddin N, et al. MicroRNA and transcription factor: key players in plant regulatory network. Front Plant Sci. 2017;8:565. doi: 10.3389/fpls.2017.00565
  • Lin PC, Lu CW, Shen BN, et al. Identification of miRnas and their targets in the liverwort marchantia polymorpha by integrating RNA-Seq and degradome analyses. Plant Cell Physiol. 2016;57(2):339–358. doi: 10.1093/pcp/pcw020
  • Tsuzuki M, Nishihama R, Ishizaki K, et al. Profiling and characterization of small RNAs in the liverwort, marchantia polymorpha, belonging to the first diverged land plants. Plant Cell Physiol. 2016;57(2):359–372. doi: 10.1093/pcp/pcv182
  • Proust H, Honkanen S, Jones VA, et al. RSL class I genes controlled the development of epidermal structures in the common ancestor of land plants. Curr Biol. 2016;26(1):93–99. doi: 10.1016/j.cub.2015.11.042
  • Flores‐Sandoval E, Eklund DM, Hong SF, et al. Class C ARF s evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol. 2018b;218(4):1612–1630.
  • Honkanen S, Thamm A, Arteaga-Vazquez MA, et al. Negative regulation of conserved RSL class I bHLH transcription factors evolved independently among land plants. Elife. 2018;7:7. doi: 10.7554/eLife.38529
  • Tsuzuki M, Futagami K, Shimamura M, et al. An early arising role of the MicroRNA156/529-SPL module in reproductive development revealed by the liverwort marchantia polymorpha. Curr Biol. 2019;29(19):3307–3314.e5. doi: https://doi.org/10.1016/j.cub.2019.07.084
  • Thamm A, Saunders TE, Dolan L. MpFEW RHIZOIDS1 miRNA-mediated lateral inhibition controls rhizoid cell patterning in marchantia polymorpha. Curr Biol. 2020;30(10):1905–1915.e4. doi: https://doi.org/10.1016/j.cub.2020.03.032
  • Streubel S, Deiber S, Rotzer J, et al. Meristem dormancy in marchantia polymorpha is regulated by a liverwort-specific miRNA and a clade III SPL gene. Curr Biol. 2023;33(4):660–674.e4. doi: https://doi.org/10.1016/j.cub.2022.12.062
  • Kruszka K, Pacak A, Swida-Barteczka A, et al. Developmentally regulated expression and complex processing of barley pri-microRnas. BMC Genomics. 2013;14(1):34. doi: 10.1186/1471-2164-14-34
  • Knop K, Stepien A, Barciszewska-Pacak M, et al. Active 5′ splice sites regulate the biogenesis efficiency of Arabidopsis microRnas derived from intron-containing genes. Nucleic Acids Res. 2017;45(5):2757–2775. doi: 10.1093/nar/gkw895
  • Montgomery SA, Tanizawa Y, Galik B, et al. Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr Biol. 2020;30(4):573–588.e7. doi: 10.1016/j.cub.2019.12.015
  • Saint-Marcoux D, Proust H, Dolan L, et al. Identification of reference genes for real-time quantitative PCR experiments in the liverwort marchantia polymorpha. PloS One. 2015;10(3):e0118678. doi: 10.1371/journal.pone.0118678
  • Addo-Quaye C, Snyder JA, Park YB, et al. Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA. 2009;15(12):2112–2121. doi: 10.1261/rna.1774909
  • German MA, Luo S, Schroth G, et al. Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc. 2009;4(3):356–362. doi: 10.1038/nprot.2009.8
  • Grabowska A, Smoczynska A, Bielewicz D, et al. Barley microRNAs as metabolic sensors for soil nitrogen availability. Plant Sci. 2020;299:110608. doi: 10.1016/j.plantsci.2020.110608
  • Sega P, Kruszka K, Bielewicz D, et al. Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses. BMC Genomics. 2021;22(1):165. doi: 10.1186/s12864-021-07481-w
  • Alaba S, Piszczalka P, Pietrykowska H, et al. The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytol. 2015;206(1):352–367. doi: 10.1111/nph.13220
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–12. doi: 10.14806/ej.17.1.200
  • Szarzynska B, Sobkowiak L, Pant BD, et al. Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRnas. Nucleic Acids Res. 2009;37(9):3083–3093. doi: 10.1093/nar/gkp189
  • Lin SS, Bowman JL. MicroRNAs in marchantia polymorpha. New Phytol. 2018;220(2):409–416. doi: 10.1111/nph.15294
  • Tan QW, Lim PK, Chen Z, et al. Cross-stress gene expression atlas of marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nat Commun. 2023;14(1):986. doi: 10.1038/s41467-023-36517-w
  • Floyd SK, Bowman JL. Gene regulation: ancient microRNA target sequences in plants. Nature. 2004;428(6982):485–486. doi: 10.1038/428485a
  • Mallory AC, Bartel DP, Bartel B. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell. 2005;17(5):1360–1375. doi: 10.1105/tpc.105.031716
  • Sakaguchi J, Watanabe Y. miR165⁄166 and the development of land plants. Dev Growth Differ. 2012;54(1):93–99. doi: https://doi.org/10.1111/j.1440-169x.2011.01318.x
  • Zhang LL, Huang YY, Zheng YP, et al. Osa-miR535 targets SQUAMOSA promoter binding protein-like 4 to regulate blast disease resistance in rice. Plant J. 2022b;110(1):166–178. doi: 10.1111/tpj.15663
  • Flores-Sandoval E, Romani F, Bowman JL. Co-expression and transcriptome analysis of marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front Plant Sci. 2018a;9:1345. doi: 10.3389/fpls.2018.01345
  • Meng Y, Shao C, Wang H, et al. The regulatory activities of plant microRnas: a more dynamic perspective. Plant Physiol. 2011;157(4):1583–1595. doi: 10.1104/pp.111.187088
  • Peng T, Sun H, Du Y, et al. Characterization and expression patterns of microRnas involved in rice grain filling. PloS One. 2013;8(1):e54148. doi: 10.1371/journal.pone.0054148
  • Swida-Barteczka A, Pacak A, Kruszka K, et al. MicroRNA172b-5p/trehalose-6-phosphate synthase module stimulates trehalose synthesis and microRna172b-3p/AP2-like module accelerates flowering in barley upon drought stress. Front Plant Sci. 2023;14:1124785. doi: 10.3389/fpls.2023.1124785
  • Carpenter JL, Ploense SE, Snustad DP, et al. Preferential expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell. 1992;4(5):557–571. doi: 10.1105/tpc.4.5.557
  • Kim Y, An G. Pollen-specific expression of the Arabidopsis thaliana alpha 1-tubulin promoter assayed by beta-glucuronidase, chloramphenicol acetyltransferase and diphtheria toxin reporter genes. Transgenic Res. 1992;1(4):188–194. doi: 10.1007/BF02522538
  • Rogers HJ, Greenland AJ, Hussey PJ. Four members of the maize β-tubulin gene family are expressed in the male gametophyte. Plant J. 1993;4(5):875–882. doi: 10.1046/j.1365-313x.1993.04050875.x
  • Villemur R, Haas NA, Joyce CM, et al. Characterization of four new ?-tubulin genes and their expression during male flower development in maize (Zea mays L.). Plant Mol Biol. 1994;24(2):295–315. doi: 10.1007/BF00020169
  • Tchorzewska D, Derylo K, Blaszczyk L, et al. Tubulin cytoskeleton during microsporogenesis in the male-sterile genotype of Allium sativum and fertile Allium ampeloprasum L. Plant Reprod. 2015;28(3–4):171–182. doi: 10.1007/s00497-015-0268-0
  • Gavazzi F, Pigna G, Braglia L, et al. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development. Bmc Plant Biol. 2017;17(1):237. doi: 10.1186/s12870-017-1186-0
  • Jost W, Baur A, Nick P, et al. A large plant beta-tubulin family with minimal C-terminal variation but differences in expression. Gene. 2004;340(1):151–160. doi: 10.1016/j.gene.2004.06.009
  • Sierocka I, Rojek A, Bielewicz D, et al. Novel genes specifically expressed during the development of the male thalli and antheridia in the dioecious liverwort Pellia endiviifolia. Gene. 2011;485(1):53–62. doi: 10.1016/j.gene.2011.06.012
  • Buschmann H, Holtmannspotter M, Borchers A, et al. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant marchantia polymorpha. New Phytol. 2016;209(3):999–1013. doi: 10.1111/nph.13691
  • Minamino N, Norizuki T, Mano S, et al. Remodeling of organelles and microtubules during spermiogenesis in the liverwort Marchantia polymorpha. Development. 2022;149(15). doi: 10.1242/dev.200951
  • Lauressergues D, Couzigou JM, Clemente HS, et al. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520(7545):90–93. doi: 10.1038/nature14346
  • Chen QJ, Deng BH, Gao J, et al. A miRNA-encoded small peptide, vvi-miPep171d1, regulates adventitious root formation. Plant Physiol. 2020;183(2):656–670. doi: 10.1104/pp.20.00197
  • Sharma A, Badola PK, Bhatia C, et al. Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Nat Plants. 2020;6(10):1262–1274. doi: 10.1038/s41477-020-00769-x
  • Lauressergues D, Ormancey M, Guillotin B, et al. Characterization of plant microRNA-encoded peptides (miPeps) reveals molecular mechanisms from the translation to activity and specificity. Cell Rep. 2022;38(6):110339. doi: 10.1016/j.celrep.2022.110339
  • She W, Grimanelli D, Rutowicz K, et al. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development. 2013;140(19):4008–4019. doi: 10.1242/dev.095034
  • Over RS, Michaels SD. Open and closed: the roles of linker histones in plants and animals. Mol Plant. 2014;7(3):481–491. doi: 10.1093/mp/sst164
  • He S, Vickers M, Zhang J, et al. Natural depletion of histone H1 in sex cells causes DNA demethylation, heterochromatin decondensation and transposon activation. Elife. 2019;8:8. doi: 10.7554/eLife.42530
  • Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant microRNA targets. Cell. 2002;110(4):513–520. doi: 10.1016/s0092-8674(02)00863-2
  • Jones-Rhoades MW, Bartel DP. Computational identification of plant microRnas and their targets, including a stress-induced miRNA. Mol Cell. 2004;14(6):787–799. doi: 10.1016/j.molcel.2004.05.027
  • Ding J, Zhou S, Guan J. Finding microRNA targets in plants: current status and perspectives. Int J Genomics Proteomics. 2012;10(5):264–275. doi: 10.1016/j.gpb.2012.09.003
  • Liu SR, Zhou JJ, Hu CG, et al. MicroRNA-mediated gene silencing in plant defense and viral counter-defense. Front Microbiol. 2017;8:1801. doi: 10.3389/fmicb.2017.01801
  • Song S, Qi T, Huang H, et al. The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in arabidopsis. Plant Cell. 2011;23(3):1000–1013. doi: 10.1105/tpc.111.083089
  • Sobkowiak L, Karlowski W, Jarmolowski A, et al. Non-canonical processing of Arabidopsis pri-miR319a/b/c generates additional microRnas to target one RAP2.12 mRNA Isoform. Front Plant Sci. 2012;3:46. doi: 10.3389/fpls.2012.00046
  • Bielewicz D, Dolata J, Zielezinski A, et al. MirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucleic Acids Res. 2012;40(Database issue):D191–D197. doi: 10.1093/nar/gkr878
  • Zielezinski A, Dolata J, Alaba S, et al. mirEX 2.0 - an integrated environment for expression profiling of plant microRnas. Bmc Plant Biol. 2015;15(1):144. doi: 10.1186/s12870-015-0533-2
  • Barciszewska-Pacak M, Milanowska K, Knop K, et al. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci. 2015;6:410. doi: 10.3389/fpls.2015.00410