770
Views
0
CrossRef citations to date
0
Altmetric
Review

The high-density lipoprotein binding protein HDLBP is an unusual RNA-binding protein with multiple roles in cancer and disease

& ORCID Icon
Pages 1-10 | Accepted 29 Jan 2024, Published online: 13 Mar 2024

References

  • Graham DL, Oram JF. Identification and characterization of a high density lipoprotein-binding protein in cell membranes by ligand blotting. J Biol Chem. 1987;262(16):7439–42. doi: 10.1016/S0021-9258(18)47584-9
  • Siomi H, Matunis MJ, Michael WM, et al. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 1993;21(5):1193–1198. doi: 10.1093/nar/21.5.1193
  • Mcknight GL, Reasoner J, Gilbert T, et al. Cloning and expression of a cellular high density lipoprotein-binding protein that is up-regulated by cholesterol loading of cells. J Biol Chem. 1992;267(17):12131–12141. doi: 10.1016/S0021-9258(19)49815-3
  • Schmidt C, Henkel B, Poschl E, et al. Complete cDNA sequence of chicken vigilin, a novel protein with amplified and evolutionary conserved domains. Eur J Biochem. 1992;206(3):625–34. doi: 10.1111/j.1432-1033.1992.tb16967.x
  • Musco G, Stier G, Joseph C, et al. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell. 1996;85(2):237–245. doi: 10.1016/S0092-8674(00)81100-9
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
  • Mirdita M, Schütze K, Moriwaki Y, et al. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19(6):679–682. doi: 10.1038/s41592-022-01488-1
  • Grishin NV. KH domain: one motif, two folds. Nucleic Acids Res. 2001;29(3):638–43. doi: 10.1093/nar/29.3.638
  • Lewis HA, Musunuru K, Jensen KB, et al. Sequence-specific RNA binding by a nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell. 2000;100(3):323–32. doi: 10.1016/S0092-8674(00)80668-6
  • Valverde R, Edwards L, Regan L. Structure and function of KH domains. FEBS J. 2008;275(11):2712–26. doi: 10.1111/j.1742-4658.2008.06411.x
  • Kruse C, Willkomm DK, Grunweller A, et al. Export and transport of tRNA are coupled to a multi-protein complex. Biochem J. 2000;346(1):107–115. doi: 10.1042/bj3460107
  • Weber V, Wernitznig A, Hager G, et al. Purification and nucleic-acid-binding properties of a Saccharomyces cerevisiae protein involved in the control of ploidy. Eur J Biochem. 1997;249(1):309–17. doi: 10.1111/j.1432-1033.1997.00309.x
  • Zinnall U, Milek M, Minia I, et al. HDLBP binds ER-targeted mRnas by multivalent interactions to promote protein synthesis of transmembrane and secreted proteins. Nat Commun. 2022;13(1):2727. doi: 10.1038/s41467-022-30322-7
  • Kruse C, Willkomm D, Gebken J, et al. The multi-KH protein vigilin associates with free and membrane-bound ribosomes. Cell Mol Life Sci. 2003;60(10):2219–27. doi: 10.1007/s00018-003-3235-0
  • Vollbrandt T, Willkomm D, Stossberg H, et al. Vigilin is co-localized with 80S ribosomes and binds to the ribosomal complex through its C-terminal domain. Int J Biochem Cell Biol. 2004;36(7):1306–18. doi: 10.1016/j.biocel.2003.11.006
  • Baum S, Bittins M, Frey S, et al. Asc1p, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scp160p with polysomes. Biochem J. 2004;380(3):823–30. doi: 10.1042/bj20031962
  • Nilsson J, Sengupta J, Frank J, et al. Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome. EMBO Rep. 2004;5(12):1137–1141. doi: 10.1038/sj.embor.7400291
  • Goolsby KM, Shapiro DJ. Rnai-mediated depletion of the 15 KH domain protein, vigilin, induces death of dividing and non-dividing human cells but does not initially inhibit protein synthesis. Nucleic Acids Res. 2003;31(19):5644–5653. doi: 10.1093/nar/gkg768
  • Mobin MB, Gerstberger S, Teupser D, et al. The RNA-binding protein vigilin regulates VLDL secretion through modulation of apob mRNA translation. Nat Commun. 2016;7(1):12848. doi: 10.1038/ncomms12848
  • Prilusky J, Bibi E. Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRnas. Proc Natl Acad Sci USA. 2009;106(16):6662–6. doi: 10.1073/pnas.0902029106
  • Cheng MH, Jansen RP. A jack of all trades: the RNA-binding protein vigilin. Wiley Interdiscip Rev RNA. 2017;8(6). doi: 10.1002/wrna.1448
  • Dodson RE, Shapiro DJ. An estrogen-inducible protein binds specifically to a sequence in the 3’ untranslated region of estrogen-stabilized vitellogenin mRNA. Mol Cell Biol. 1994;14(5):3130–8. doi: 10.1128/MCB.14.5.3130
  • Rumpel E, Kruse C, Muller PK, et al. Expression of vigilin in the uterus of ovariectomized steroid-treated rats and during the estrous cycle. Ann Anat. 1996;178(4):337–44. doi: 10.1016/S0940-9602(96)80089-6
  • Dodson RE, Acena MR, Shapiro DJ. Tissue distribution, hormone regulation and evidence for a human homologue of the estrogen-inducible xenopus laevis vitellogenin mRNA binding protein. J Steroid Biochem Mol Biol. 1995;52(6):505–15. doi: 10.1016/0960-0760(95)00018-U
  • Wallace RA. Vitellogenesis and oocyte growth in nonmammalian vertebrates. In: BL W, editor. Developmental biology. Boston, MA: Springer; 1985. doi: 10.1007/978-1-4615-6814-8_3
  • Dodson RE, Shapiro DJ. Regulation of pathways of mRNA destabilization and stabilization. Prog Nucleic Acid Res Mol Biol. 2002;72:129–164.
  • Zhong L, Yuan L, Rao Y, et al. Investigation of effect of 17alpha-ethinylestradiol on vigilin expression using an isolated recombinant antibody. Aquat Toxicol. 2014;156:1–9. doi: 10.1016/j.aquatox.2014.07.016
  • Hilgendorf I, Gellersen O, Emmrich J, et al. Estradiol has a direct impact on the exocrine pancreas as demonstrated by enzyme and vigilin expression. Pancreatology. 2001;1(1):24–9. doi: 10.1159/000055788
  • Chiu DS, Oram JF, LeBoeuf RC, et al. High-density lipoprotein-binding protein (Hbp)/vigilin is expressed in human atherosclerotic lesions and colocalizes with apolipoprotein E. Arterioscler Thromb Vasc Biol. 1997;17(11):2350–8. doi: 10.1161/01.ATV.17.11.2350
  • Dashti M, Kulik W, Hoek F, et al. A phospholipidomic analysis of all defined human plasma lipoproteins. Sci Rep. 2011;1(1):139. doi: 10.1038/srep00139
  • Yang Y. Investigating the role of VIGILIN in mRNA translation. Doktorarbeit: ETH Zurich; 2022.
  • Kalnina Z, Silina K, Meistere I, et al. Evaluation of T7 and lambda phage display systems for survey of autoantibody profiles in cancer patients. J Immunol Methods. 2008;334(1–2):37–50. doi: 10.1016/j.jim.2008.01.022
  • Kim NS, Hahn Y, Oh JH, et al. Gene cataloging and expression profiling in human gastric cancer cells by expressed sequence tags. Genomics. 2004;83(6):1024–45. doi: 10.1016/j.ygeno.2003.12.002
  • Gagne JP, Gagne P, Hunter JM, et al. Proteome profiling of human epithelial ovarian cancer cell line TOV-112D. Mol Cell Biochem. 2005;275(1–2):25–55. doi: 10.1007/s11010-005-7556-1
  • Kim H, Lubman DM. Micro-proteome analysis using micro-chromatofocusing in intact protein separations. J Chromatogr A. 2008;1194(1):3–10. doi: 10.1016/j.chroma.2008.03.065
  • Evans CO, Moreno CS, Zhan X, et al. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary. 2008;11(3):231–45. doi: 10.1007/s11102-007-0082-2
  • Takeuchi Y, Yoshida K, Halik A, et al. The landscape of genetic aberrations in myxofibrosarcoma. Int J Cancer. 2022;151(4):565–77. doi: 10.1002/ijc.34051
  • Molyneux SD, Waterhouse PD, Shelton D, et al. Human somatic cell mutagenesis creates genetically tractable sarcomas. Nat Genet. 2014;46(9):964–72. doi: 10.1038/ng.3065
  • Yen CC, Chen WM, Chen TH, et al. Identification of chromosomal aberrations associated with disease progression and a novel 3q13.31 deletion involving LSAMP gene in osteosarcoma. Int J Oncol. 2009;35(4):775–788. doi: 10.3892/ijo_00000390
  • Hong JY, Cho HJ, Yun KH, et al. Comprehensive molecular characterization of soft tissue sarcoma for prediction of pazopanib-based treatment response. Cancer Res Treat. 2023;55(2):671–83. doi: 10.4143/crt.2022.251
  • Yang WL, Wei L, Huang WQ, et al. Vigilin is overexpressed in hepatocellular carcinoma and is required for HCC cell proliferation and tumor growth. Oncol Rep. 2014;31(5):2328–34. doi: 10.3892/or.2014.3111
  • Yuan J, Lv T, Yang J, et al. The lipid transporter HDLBP promotes hepatocellular carcinoma metastasis through BRAF-dependent epithelial-mesenchymal transition. Cancer Lett. 2022;549:215921. doi: 10.1016/j.canlet.2022.215921
  • Kosmas K, Filippakis H, Khabibullin D, et al. TSC2 interacts with HDLBP/Vigilin and regulates stress granule formation. Mol Cancer Res. 2021;19(8):1389–97. doi: 10.1158/1541-7786.MCR-20-1046
  • Weidner J, Wang C, Prescianotto-Baschong C, et al. The polysome-associated proteins Scp160 and Bfr1 prevent P body formation under normal growth conditions. J Cell Sci. 2014;127:1992–2004. doi: 10.1242/jcs.142083
  • European chromosome 16 tuberous sclerosis C. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75(7):1305–15. doi: 10.1016/0092-8674(93)90618-Z
  • Rehbein U, Prentzell MT, Cadena Sandoval M, et al. The TSC complex-mTORC1 axis: from lysosomes to stress granules and back. Front Cell Dev Biol. 2021;9:751892. doi: 10.3389/fcell.2021.751892
  • Woo HH, Yi X, Lamb T, et al. Posttranscriptional suppression of proto-oncogene c-fms expression by vigilin in breast cancer. Mol Cell Biol. 2011;31(1):215–25. doi: 10.1128/MCB.01031-10
  • Sherr CJ, Roussel MF, Rettenmier CW. Colony-stimulating factor-1 receptor (c-fms). J Cell Biochem. 1988;38(3):179–87. doi: 10.1002/jcb.240380305
  • Toy EP, Bonafe N, Savlu A, et al. Correlation of tumor phenotype with c-fms proto-oncogene expression in an in vivo intraperitoneal model for experimental human breast cancer metastasis. Clin Exp Metastasis. 2005;22(1):1–9. doi: 10.1007/s10585-005-0718-4
  • Woo HH, Lee SC, Stoffer JB, et al. Phenotype of vigilin expressing breast cancer cells binding to the 69 nt 3′UTR element in CSF-1R mRNA. Transl Oncol. 2019;12(1):106–115. doi: 10.1016/j.tranon.2018.09.012
  • Brennan CM, Steitz JA. HuR and mRNA stability. Cell Mol Life Sci. 2001;58(2):266–77. doi: 10.1007/PL00000854
  • Page DL, Dupont WD, Rogers LW, et al. Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer. 1985;55(11):2698–708. doi: 10.1002/1097-0142(19850601)55:11<2698:AID-CNCR2820551127>3.0.CO;2-A
  • Zhou W, Zhao L, Yuan H, et al. A new small cell lung cancer biomarker identified by cell-SELEX generated aptamers. Exp Cell Res. 2019;382(2):111478. doi: 10.1016/j.yexcr.2019.06.023
  • Ohuchi S. Cell-SELEX technology. Biores Open Access. 2012;1(6):265–72. doi: 10.1089/biores.2012.0253
  • Hiratsuka T, Yamamoto T, Yoshizawa A, et al. RhoA and vigilin are candidates for immunohistochemical markers for epithelioid malignant mesothelioma. Sci Rep. 2022;12(1):18519. doi: 10.1038/s41598-022-20334-0
  • Hogan DJ, Riordan DP, Gerber AP, et al. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 2008;6(10):e255. doi: 10.1371/journal.pbio.0060255
  • Shen Y, Li X, Dong D, et al. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8(6):916.
  • Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer Res. 2016;76(8):2063–70. doi: 10.1158/0008-5472.CAN-15-2613
  • Yuan J, Lv T, Yang J, et al. HDLBP promotes hepatocellular carcinoma proliferation and sorafenib resistance by suppressing Trim71-dependent RAF1 degradation. Cell Mol Gastroenterol Hepatol. 2023;15(2):307–25. doi: 10.1016/j.jcmgh.2022.10.005
  • Tomatsu M, Ohnishi-Kameyama M, Shibamoto N. Aralin, a new cytotoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer Lett. 2003;199(1):19–25. doi: 10.1016/S0304-3835(03)00348-3
  • Tomatsu M, Kondo T, Yoshikawa T, et al. An apoptotic inducer, aralin, is a novel type II ribosome-inactivating protein from aralia elata. Biol Chem. 2004;385(9):819–27. doi: 10.1515/BC.2004.107
  • Otsuka H, Gotoh Y, Komeno T, et al. Aralin, a type II ribosome-inactivating protein from aralia elata, exhibits selective anticancer activity through the processed form of a 110-kDa high-density lipoprotein-binding protein: a promising anticancer drug. Biochem Biophys Res Commun. 2014;453(1):117–23. doi: 10.1016/j.bbrc.2014.09.067
  • Yuan J, Lv T, Yang J, et al. HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma. Redox Biol. 2022;58:102546. doi: 10.1016/j.redox.2022.102546
  • Brugier A, Hafirrassou ML, Pourcelot M, et al. RACK1 associates with RNA-Binding proteins vigilin and SERBP1 to facilitate dengue virus replication. J Virol. 2022;96(7):e0196221. doi: 10.1128/jvi.01962-21
  • Ooi YS, Majzoub K, Flynn RA, et al. An RNA-centric dissection of host complexes controlling flavivirus infection. Nat Microbiol. 2019;4(12):2369–82. doi: 10.1038/s41564-019-0518-2
  • Vashist S, Urena L, Chaudhry Y, et al. Identification of RNA-protein interaction networks involved in the norovirus life cycle. J Virol. 2012;86(22):11977–90. doi: 10.1128/JVI.00432-12
  • Lee S, Lee YS, Choi Y, et al. The SARS-CoV-2 RNA interactome. Mol Cell. 2021;81(13):2838–50 e6. doi: 10.1016/j.molcel.2021.04.022
  • Hassan Z, Kumar ND, Reggiori F, et al. How viruses hijack and modify the secretory transport pathway. Cells. 2021;10(10):2535. doi: 10.3390/cells10102535
  • Kapikian AZ, Wyatt RG, Dolin R, et al. Visualization by immune electron microscopy of a 27-nm particle associated with acute infectious nonbacterial gastroenteritis. J Virol. 1972;10(5):1075–81. doi: 10.1128/jvi.10.5.1075-1081.1972
  • Simmonds P, Becher P, Bukh J, et al. ICTV virus taxonomy profile: flaviviridae. J Gen Virol. 2017;98(1):2–3. doi: 10.1099/jgv.0.000672
  • Wanker EE, Sun Y, Savitz AJ, et al. Functional characterization of the 180-kD ribosome receptor in vivo. J Cell Bio. 1995;130(1):29–39. doi: 10.1083/jcb.130.1.29
  • Zarnegar BJ, Flynn RA, Shen Y, et al. IrCLIP platform for efficient characterization of protein–RNA interactions. Nat Methods. 2016;13(6):489–492. doi: 10.1038/nmeth.3840
  • Neufeldt CJ, Cortese M, Acosta EG, et al. Rewiring cellular networks by members of the flaviviridae family. Nature Rev Microbiol. 2018;16(3):125–142. doi: 10.1038/nrmicro.2017.170
  • Hirschmann WD, Westendorf H, Mayer A, et al. Scp160p is required for translational efficiency of codon-optimized mRnas in yeast. Nucleic Acids Res. 2014;42(6):4043–55. doi: 10.1093/nar/gkt1392