1,176
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification

, , , , , , , & show all
Pages 1-12 | Accepted 23 Jan 2024, Published online: 25 Mar 2024

References

  • Chen X, Huang L. Computational model for ncrna research. Oxford University Press; 2022. (Vol. 23) (No. 6). doi: 10.1093/bib/bbac472.
  • Chantsalnyam T, Siraj A, Tayara H, et al. Ncrdense: a novel computational approach for classification of non-coding RNA family by deep learning. Genomics. 2021;113(5):3030–3038. doi: 10.1016/j.ygeno.2021.07.004
  • Guan S, Zhang Z, Wu J. Non-coding RNA delivery for bone tissue engineering: progress, challenges, and potential solutions. Iscience. 2022;25(8):104807. doi: 10.1016/j.isci.2022.104807
  • Panni S, Lovering RC, Porras P, et al. Non-coding RNA regulatory networks. Biophys Acta Gene Regul Mech. 2020;6(6):194417. doi: 10.1016/j.bbagrm.2019.194417
  • Vilaça A, de Windt LJ, Fernandes H, et al. Strategies and challenges for non-viral delivery of non-coding RNAs to the heart. Trends Mol Med. 2023;29(1):70–91. doi: 10.1016/j.molmed.2022.10.002
  • Xu D, Yuan W, Fan C, et al. Opportunities and challenges of predictive approaches for the non-coding RNA in plants. Front Plant Sci. 2022;13:890663. doi: 10.3389/fpls.2022.890663
  • Adnane S, Marino A, Leucci E. Lncrnas in human cancers: signal from noise. Trends Cell Biol. 2022;32(7):565–573. doi: 10.1016/j.tcb.2022.01.006
  • Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18. doi: 10.1038/nrc.2017.99
  • Aprile M, Costa V, Cimmino A, et al. Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int J Cancer. 2023;152(5):822–834. doi: 10.1002/ijc.34282
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–874. doi: 10.1038/nrg3074
  • Lauretti E, Dabrowski K, Praticò D. The neurobiology of non-coding RNAs and alzheimer’s disease pathogenesis: pathways, mechanisms and translational opportunities. Ageing Res Rev. 2021;71:101425. doi: 10.1016/j.arr.2021.101425
  • Rezaei O, Nateghinia S, Estiar MA, et al. Assessment of the role of non-coding RNAs in the pathophysiology of parkinson’s disease. Eur J Pharmacol. 2021;896:173914. doi: 10.1016/j.ejphar.2021.173914
  • Zhang H, Liu X, Liu Y, et al. Crosstalk between regulatory non-coding RNAs and oxidative stress in parkinson’s disease. Front Aging Neurosci. 2022;14. doi: 10.3389/fnagi.2022.975248
  • Tan X, Liu Y, Liu Y, et al. Dysregulation of long non-coding RNAs and their mechanisms in huntington’s disease. J Neurosci Res. 2021;99(9):2074–2090. doi: 10.1002/jnr.24825
  • Sabaie H, Moghaddam MM, Moghaddam MM, et al. Bioinformatics analysis of long non-coding RNA-associated competing endogenous RNA network in schizophrenia. Sci Rep. 2021;11(1):24413. doi: 10.1038/s41598-021-03993-3
  • Bella F, Campo S. Long non-coding RNAs and their involvement in bipolar disorders. Gene. 2021;796-797:145803. doi: 10.1016/j.gene.2021.145803
  • Tong Z, Zhou Y, Wang J. Identification and functional analysis of long non-coding RNAs in autism spectrum disorders. Front Genet. 2020;11:849. doi: 10.3389/fgene.2020.00849
  • Correia CCM, Rodrigues LF, de Avila Pelozin BR, et al. Long non-coding RNAs in cardiovascular diseases: potential function as biomarkers and therapeutic targets of exercise training. Noncoding RNA. 2021;7(4):65. doi: 10.3390/ncrna7040065
  • Poller W, Dimmeler S, Heymans S, et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704–2716. doi: 10.1093/eurheartj/ehx165
  • Hermann DM, Xin W, Bähr M, et al. Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: insights from cancer, myocardial infarction and ischemic stroke. Theranostics. 2022;12(13):5776. doi: 10.7150/thno.73931
  • Li X, Qi H, Cui W, et al. Recent advances in targeted delivery of non-coding RNA-based therapeutics for atherosclerosis. Molecular Therapy; 2022.
  • Zahid KR, Raza U, Chen J, et al. Pathobiology of pulmonary artery hypertension: role of long non-coding rnas. Cardiovasc Res. 2020;116(12):1937–1947. doi: 10.1093/cvr/cvaa050
  • Tanwar VS, Reddy MA, Natarajan R. Emerging role of long non-coding RNAs in diabetic vascular complications. Front Endocrinol (Lausanne). 2021;12:665811. doi: 10.3389/fendo.2021.665811
  • Ghafouri-Fard S, Taheri M. The expression profile and role of non-coding RNAs in obesity. Eur J Pharmacol. 2021;892:173809. doi: 10.1016/j.ejphar.2020.173809
  • Shabgah AG, Norouzi F, Hedayati-Moghadam M, et al. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutri Metabol. 2021;18(1):1–15. doi: 10.1186/s12986-021-00552-5
  • Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17(4):196–203. doi: 10.1016/j.tplants.2012.01.010
  • Yang H, Cui Y, Feng Y, et al. Long non-coding RNAs of plants in response to abiotic stresses and their regulating roles in promoting environmental adaption. Cells. 2023;12(5):729. doi: 10.3390/cells12050729
  • Chillón I, Marcia M. The molecular structure of long non-coding RNAs: emerging patterns and functional implications. Crit Rev Biochem Mol Biol. 2020;55(6):662–690. doi: 10.1080/10409238.2020.1828259
  • Qu S, Zhong Y, Shang R, et al. The emerging landscape of circular RNA in life processes. RNA Biol. 2017;14(8):992–999. doi: 10.1080/15476286.2016.1220473
  • Micheel J, Safrastyan A, Wollny D. Advances in non-coding RNA sequencing. Noncoding RNA. 2021;7(4):70. doi: 10.3390/ncrna7040070
  • Wang H-LV, Chekanova JA. An overview of methodologies in studying lncrnas in the high-throughput era: when acronyms attack! Plant Long Non-Coding RNAs: Methods Protoc. 2019;1–30.
  • Legeai F, Derrien T. Identification of long non-coding RNAs in insects genomes. Curr Opin Insect Sci. 2015;7:37–44. doi: 10.1016/j.cois.2015.01.003
  • Ulitsky I. Evolution to the rescue: using comparative genomics to understand long non-coding rnas. Nat Rev Genet. 2016;17(10):601–614. doi: 10.1038/nrg.2016.85
  • Fang S, Zhang L, Guo J, et al. Noncodev5: a comprehensive annotation database for long non-coding rnas. Nucleic Acids Res. 2018;46(D1):D308–D314. doi: 10.1093/nar/gkx1107
  • Bonidia RP, Sampaio LD, Domingues DS, et al. Feature extraction approaches for biological sequences: a comparative study of mathematical features. Brief Bioinform. 2021;22(5):bbab011. doi: 10.1093/bib/bbab011
  • Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2017;18(5):851–869. doi: 10.1093/bib/bbw068
  • Pan X, Shen H-B. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinf. 2017;18(1):1–14. doi: 10.1186/s12859-017-1561-8
  • Chaabane M, Williams RM, Stephens AT, et al. Circdeep: deep learning approach for circular RNA classification from other long non-coding rna. Bioinformatics. 2020;36(1):73–80. doi: 10.1093/bioinformatics/btz537
  • Liu X-Q, Li B-X, Zeng G-R, et al. Prediction of long non-coding RNAs based on deep learning. Genes (Basel). 2019;10(4):273. doi: 10.3390/genes10040273
  • Fiannaca A, La Rosa M, La Paglia L, et al. Nrc: non-coding RNA classifier based on structural features. BioData Min. 2017;10(1):1–18. doi: 10.1186/s13040-017-0148-2
  • Chantsalnyam T, Lim DY, Tayara H, et al. Ncrdeep: non-coding RNA classification with convolutional neural network. Comput Biol Chem. 2020;88:107364. doi: 10.1016/j.compbiolchem.2020.107364
  • Dara S, Tumma P. Feature extraction by using deep learning: a survey. In 2018 second international conference on electronics, communication and aerospace technology (iceca); 2018. p. 1795–1801).
  • Dong N, Feng Q, Zhai M, et al. A novel feature fusion based deep learning framework for white blood cell classification. J Ambient Intell Humaniz Comput. 2022;14(8):9839–9851. doi: 10.1007/s12652-021-03642-7
  • Kusumoto D, Yuasa S. The application of convolutional neural network to stem cell biology. Inflamm Regen. 2019;39(1):1–7. doi: 10.1186/s41232-019-0103-3
  • Li Z, Liu F, Yang W, et al. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems; 2021.
  • Van Houdt G, Mosquera C, Nãpoles G. A review on the long short-term memory model. Artif Intell Rev. 2020;53(8):5929–5955. doi: 10.1007/s10462-020-09838-1
  • ElAbd H, Bromberg Y, Hoarfrost A, et al. Amino acid encoding for deep learning applications. BMC Bioinf. 2020;21(1):1–14. doi: 10.1186/s12859-020-03546-x
  • Morales JA, Saldaña R, Santana-Castolo MH, et al. Deep learning for the classification of genomic signals. Math Prob Eng. 2020;2020:1–9. doi: 10.1155/2020/7698590
  • Jing R, Li Y, Xue L, et al. Autobioseqpy: a deep learning tool for the classification of biological sequences. J Chem Inf Model. 2020;60(8):3755–3764. doi: 10.1021/acs.jcim.0c00409
  • Zhang Y, Patel K, Endrawis T, et al. A fastq compressor based on integer-mapped k-mer indexing for biologist. Gene. 2016;579(1):75–81. doi: 10.1016/j.gene.2015.12.053
  • Bonidia RP, Santos APA, de Almeida BL, et al. Bioautoml: automated feature engineering and metalearning to predict noncoding RNAs in bacteria. Brief Bioinform. 2022;23(4):bbac218. doi: 10.1093/bib/bbac218
  • Barik A, Das S. A comparative study of sequence-and structure-based features of small RNAs and other RNAs of bacteria. RNA Biol. 2018;15(1):95–103. doi: 10.1080/15476286.2017.1387709
  • Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–2935. doi: 10.1093/bioinformatics/btt509
  • Kalvari I, Nawrocki EP, Ontiveros-Palacios N, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021;49(D1):D192–D200. doi: 10.1093/nar/gkaa1047
  • Kalvari I, Nawrocki EP, Argasinska J, et al. Non-coding RNA analysis using the rfam database. Curr Protoc Bioinf. 2018;62(1):e51. doi: 10.1002/cpbi.51
  • Georgescu M-I, Ionescu RT, Popescu M. Local learning with deep and hand-crafted features for facial expression recognition. IEEE Access. 2019;7:64827–64836. doi: 10.1109/ACCESS.2019.2917266
  • Nanni L, Ghidoni S, Brahnam S. Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognition. 2017;71:158–172. doi: 10.1016/j.patcog.2017.05.025
  • Saba T. Computer vision for microscopic skin cancer diagnosis using handcrafted and non-handcrafted features. Microsc Res Tech. 2021;84(6):1272–1283. doi: 10.1002/jemt.23686
  • Chen Z, Zhao P, Li F, et al. iLearn: an integrated platform and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA and protein sequence data. Brief Bioinform. 2020;21(3):1047–1057. doi: 10.1093/bib/bbz041
  • Jia C-Z, Zhang J-J, Gu W-Z. RNA-methylpred: a high-accuracy predictor to identify n6-methyladenosine in rna. Anal Biochem. 2016;510:72–75. doi: 10.1016/j.ab.2016.06.012
  • Tahir M, Hayat M, Kabir M. Sequence based predictor for discrimination of enhancer and their types by applying general form of chou’s trinucleotide composition. Comput Methods Programs Biomed. 2017;146:69–75. doi: 10.1016/j.cmpb.2017.05.008
  • Wang L, Park HJ, Dasari S, et al. Cpat: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41(6):e74–e74. doi: 10.1093/nar/gkt006
  • Muhammod R, Ahmed S, Md Farid D. PyFeat: a python-based effective feature generation tool for DNA, RNA and protein sequences. Bioinformatics. 2019;35(19):3831–3833. doi: 10.1093/bioinformatics/btz165
  • Sieber P, Platzer M, Schuster S. The definition of open reading frame revisited. Trends Genet. 2018;34(3):167–170. doi: 10.1016/j.tig.2017.12.009
  • Deng L, Wu H, Liu X, et al. Deepd2v: a novel deep learning-based framework for predicting transcription factor binding sites from combined DNA sequence. Int J Mol Sci. 2021;22(11):5521. doi: 10.3390/ijms22115521
  • Dahouda MK, Joe I. A deep-learned embedding technique for categorical features encoding. IEEE Access. 2021;9:114381–114391. doi: 10.1109/ACCESS.2021.3104357
  • Noviello TMR, Ceccarelli F, Ceccarelli M, et al. Deep learning predicts short non-coding RNA functions from only raw sequence data. PLoS comput Biol. 2020;16(11):e1008415. doi: 10.1371/journal.pcbi.1008415
  • … others, Chen T, He T, et al. Xgboost: extreme gradient boosting. R Package Version 0 4-2. 2015;1(4):1–4.
  • Ben-Hur A, Ong CS, Sonnenburg S, et al. Support vector machines and kernels for computational biology. PLoS comput Biol. 2008;4(10):e1000173. doi: 10.1371/journal.pcbi.1000173
  • Moon H, Ahn H, Kodell RL, et al. Ensemble methods for classification of patients for personalized medicine with high-dimensional data. Artif Intell Med. 2007;41(3):197–207. doi: 10.1016/j.artmed.2007.07.003
  • Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you need. Inf Fusion. 2022;81:84–90. doi: 10.1016/j.inffus.2021.11.011
  • Akiba T, Sano S, Yanase T, et al. Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th acm sigkdd international conference on knowledge discovery & data mining; 2019. p. 2623–2631.
  • Nawrocki EP. Annotating functional RNAs in genomes using infernal. RNA Sequence, Structure, And Function: Comput Bioinf Methods. 2014;163–197.