2,871
Views
0
CrossRef citations to date
0
Altmetric
Review

mRNA vaccine designs for optimal adjuvanticity and delivery

& ORCID Icon
Pages 1-27 | Accepted 15 Mar 2024, Published online: 26 Mar 2024

References

  • Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–838. doi: 10.1038/s41573-021-00283-5
  • Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11. doi: 10.1038/s41591-021-01377-8
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603–15. doi: 10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–16. doi: 10.1056/NEJMoa2035389
  • Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–80. doi: 10.1016/j.cell.2021.01.007
  • Liu J, Chandrashekar A, Sellers D, et al. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 omicron. Nature. 2022;603(7901):493–6. doi: 10.1038/s41586-022-04465-y
  • Liu C, Shi Q, Huang X, et al. mRNA-based cancer therapeutics. Nat Rev Cancer. 2023;23(8):526–43. doi: 10.1038/s41568-023-00586-2
  • Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585(7823):107–12. doi: 10.1038/s41586-020-2537-9
  • Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618(7963):144–50. doi: 10.1038/s41586-023-06063-y
  • Yang R, Deng Y, Huang B, et al. A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Sig Transduct Target Ther. 2021;6(1):213. doi: 10.1038/s41392-021-00634-z
  • Hassett KJ, Rajlic IL, Bahl K, et al. mRNA Vaccine Trafficking and Resulting Protein Expression After Intramuscular Administration. Mol Ther Nucleic Acids. doi: 10.1016/j.omtn.2023.102083
  • Krauson AJ, Casimero FVC, Siddiquee Z, et al. Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. NPJ Vaccin. 2023;8(1):141. doi: 10.1038/s41541-023-00742-7
  • Mallapaty S, Callaway E, Kozlov M, et al. How COVID vaccines shaped 2021 in eight powerful charts. Nature. 2021;600(7890):580–3. doi: 10.1038/d41586-021-03686-x
  • Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. 1993;23(7):1719–22. doi: 10.1002/eji.1830230749
  • Conry RM, LoBuglio AF, Wright M, et al. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995;55(7):1397–1400.
  • Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75. doi: 10.1016/j.immuni.2005.06.008
  • Wang J, Zhu H, Gan J, et al. Engineered mRNA delivery systems for biomedical applications. Adv Mater. n/a:2308029. doi: 10.1002/adma.202308029
  • Rouf NZ, Biswas S, Tarannum N, et al. Demystifying mRNA vaccines: an emerging platform at the forefront of cryptic diseases. RNA Biol. 2022;19(1):386–410. doi: 10.1080/15476286.2022.2055923
  • Alameh MG, Tombacz I, Bettini E, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54(12):2877–92 e7. doi: 10.1016/j.immuni.2021.11.001
  • Li C, Lee A, Grigoryan L, et al. Mechanisms of innate and adaptive immunity to the pfizer-BioNTech BNT162b2 vaccine. Nat Immunol. 2022;23(4):543–55. doi: 10.1038/s41590-022-01163-9
  • Rosa SS, Prazeres DMF, Azevedo AM, et al. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine. 2021;39(16):2190–200. doi: 10.1016/j.vaccine.2021.03.038
  • Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94. doi: 10.1038/s41578-021-00358-0
  • Uchida S, Yin Jerry Lau C, Oba M, et al. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev. 2023;199:114972. doi: 10.1016/j.addr.2023.114972
  • Altmann DM, Boyton RJ. COVID-19 vaccination: the road ahead. Science. 2022;375(6585):1127–32. doi: 10.1126/science.abn1755
  • Callaway E. The next generation of coronavirus vaccines: a graphical guide. Nature. 2023;614(7946):22–5. doi: 10.1038/d41586-023-00220-z
  • Barbier AJ, Jiang AY, Zhang P, et al. The clinical progress of mRNA vaccines and immunotherapies. Nature Biotechnol. 2022;40(6):840–54. doi: 10.1038/s41587-022-01294-2
  • Pulendran B, SA P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–75. doi: 10.1038/s41573-021-00163-y
  • Kobiyama K, Ishii KJ. Making innate sense of mRNA vaccine adjuvanticity. Nat Immunol. 2022;23(4):474–476. doi: 10.1038/s41590-022-01168-4
  • Arunachalam PS, Scott MKD, Hagan T, et al. Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature. 2021;596(7872):410–6. doi: 10.1038/s41586-021-03791-x
  • Verbeke R, Hogan MJ, Lore K, et al. Innate immune mechanisms of mRNA vaccines. Immunity. 2022;55(11):1993–2005. doi: 10.1016/j.immuni.2022.10.014
  • Abbasi S, Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics. 2021;13(5):644. doi: 10.3390/pharmaceutics13050644
  • Schlosser E, Mueller M, Fischer S, et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine. 2008;26(13):1626–37. doi: 10.1016/j.vaccine.2008.01.030
  • Fischer NO, Rasley A, Corzett M, et al. Colocalized delivery of adjuvant and antigen using nanolipoprotein particles enhances the immune response to recombinant antigens. J Am Chem Soc. 2013;135(6):2044–7. doi: 10.1021/ja3063293
  • Botos I, Liu L, Wang Y, et al. The toll-like receptor 3: dsRNA signaling complex. Biochim Biophys Acta. 2009;1789(9–10):667–74. doi: 10.1016/j.bbagrm.2009.06.005
  • Tanji H, Ohto U, Shibata T, et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol. 2015;22(2):109–15. doi: 10.1038/nsmb.2943
  • Kato H, Takeuchi O, Mikamo-Satoh E, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. J Exp Med. 2008;205(7):1601–1610. doi: 10.1084/jem.20080091
  • Schlee M, Roth A, Hornung V, et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity. 2009;31(1):25–34. doi: 10.1016/j.immuni.2009.05.008
  • Nelson J, Sorensen EW, Mintri S, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020;6(26):eaaz6893. doi: 10.1126/sciadv.aaz6893
  • Schuberth-Wagner C, Ludwig J, Bruder AK, et al. A conserved histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated self RNA. Immunity. 2015;43(1):41–51. doi: 10.1016/j.immuni.2015.06.015
  • Despic V, Jaffrey SR. mRNA ageing shapes the Cap2 methylome in mammalian mRNA. Nature. 2023;614(7947):358–366. doi: 10.1038/s41586-022-05668-z
  • Ishikawa M, Murai R, Hagiwara H, et al. Preparation of eukaryotic mRNA having differently methylated adenosine at the 5′-terminus and the effect of the methyl group in translation. Nucleic Acids Symp Ser. 2009;53(1):129–130. doi: 10.1093/nass/nrp065
  • Vlatkovic I, Ludwig J, Boros G, et al. Ribozyme assays to quantify the capping efficiency of in vitro-transcribed mRNA. Pharmaceutics. 2022;14(2):328. doi: 10.3390/pharmaceutics14020328
  • Moradian H, Roch T, Anthofer L, et al. Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages. Mol Ther Nucleic Acids. 2022;27:854–69. doi: 10.1016/j.omtn.2022.01.004
  • Kariko K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21):e142. doi: 10.1093/nar/gkr695
  • Triana-Alonso FJ, Dabrowski M, Wadzack J, et al. Self-coded 3′-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem. 1995;270(11):6298–6307. doi: 10.1074/jbc.270.11.6298
  • Gholamalipour Y, Karunanayake Mudiyanselage A, Martin CT. 3′ end additions by T7 RNA polymerase are RNA self-templated, distributive and diverse in character—RNA-Seq analyses. Nucleic Acids Res. 2018;46(18):9253–9263. doi: 10.1093/nar/gky796
  • Kobiyama K, Imai M, Jounai N, et al. Optimization of an LNP-mRNA vaccine candidate targeting SARS-CoV-2 receptor-binding domain. bioRxiv. 2021:2021.03.04.433852. doi: 10.1101/2021.03.04.433852
  • Anderson BR, Muramatsu H, Jha BK, et al. Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 2011;39(21):9329–38. doi: 10.1093/nar/gkr586
  • Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38(17):5884–92. doi: 10.1093/nar/gkq347
  • Inagaki M, Abe N, Li Z, et al. Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures. Nat Commun. 2023;14(1):2657. doi: 10.1038/s41467-023-38244-8
  • Dousis A, Ravichandran K, Hobert EM, et al. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Nature Biotechnol. 2023;41(4):560–8. doi: 10.1038/s41587-022-01525-6
  • Ndeupen S, Qin Z, Jacobsen S, et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24(12):103479. doi: 10.1016/j.isci.2021.103479
  • Miao L, Li L, Huang Y, et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nature Biotechnol. 2019;37(10):1174–85. doi: 10.1038/s41587-019-0247-3
  • Zhang H, You X, Wang X, et al. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proc Natl Acad Sci USA. 2021;118(6):e2005191118. doi: 10.1073/pnas.2005191118
  • Han X, Alameh MG, Butowska K, et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat Nanotech. 2023;18(9):1105–14. doi: 10.1038/s41565-023-01404-4
  • Sharp FA, Ruane D, Claass B, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci, USA. 2009;106(3):870–875. doi: 10.1073/pnas.0804897106
  • Forster Iii J, Nandi D, Kulkarni A. mRNA-carrying lipid nanoparticles that induce lysosomal rupture activate NLRP3 inflammasome and reduce mRNA transfection efficiency. Biomater Sci. 2022;10(19):5566–82. doi: 10.1039/D2BM00883A
  • Sokal A, Bastard P, Chappert P, et al. Human type I IFN deficiency does not impair B cell response to SARS-CoV-2 mRNA vaccination. J Exp Med. 2023;220(1):220. doi: 10.1084/jem.20220258
  • Ndeupen S, Bouteau A, Herbst C, et al. Langerhans cells and cDc1s play redundant roles in mRNA-LNP induced protective anti-influenza and anti-SARS-CoV-2 immune responses. PLoS Pathog. 2022;18(1):e1010255. doi: 10.1371/journal.ppat.1010255
  • Liang F, Lindgren G, Lin A, et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther. 2017;25(12):2635–47. doi: 10.1016/j.ymthe.2017.08.006
  • Tahtinen S, Tong AJ, Himmels P, et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol. 2022;23(4):532–42. doi: 10.1038/s41590-022-01160-y
  • Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401. doi: 10.1038/nature18300
  • Krienke C, Kolb L, Diken E, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021;371(6525):145–53. doi: 10.1126/science.aay3638
  • Rittig SM, Haentschel M, Weimer KJ, et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. 2011;19(5):990–9. doi: 10.1038/mt.2010.289
  • Kreiter S, Diken M, Selmi A, et al. FLT3 ligand enhances the cancer therapeutic potency of naked RNA vaccines. Cancer Res. 2011;71(19):6132–42. doi: 10.1158/0008-5472.can-11-0291
  • Zhuang X, Chen L, Yang S, et al. R848 adjuvant laden with self-assembled nanoparticle-based mRNA vaccine elicits protective immunity against H5N1 in mice. Front Immunol. 2022;13:836274. doi: 10.3389/fimmu.2022.836274
  • Fan N, Chen K, Zhu R, et al. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Sci Adv. 2022;8(51):eabq3500. doi: 10.1126/sciadv.abq3500
  • Yang J, Arya S, Lung P, et al. Hybrid nanovaccine for the co-delivery of the mRNA antigen and adjuvant. Nanoscale. 2019;11(45):21782–9. doi: 10.1039/C9NR05475H
  • Islam MA, Rice J, Reesor E, et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials. 2021;266:120431. doi: 10.1016/j.biomaterials.2020.120431
  • Gu Y, Yang J, He C, et al. Incorporation of a Toll-like receptor 2/6 agonist potentiates mRNA vaccines against cancer and infectious diseases. Signal Transduct Target Ther. 2023;8(1):273. doi: 10.1038/s41392-023-01479-4
  • Verbeke R, Lentacker I, Breckpot K, et al. Broadening the message: a Nanovaccine Co-loaded with Messenger RNA and alpha-GalCer induces antitumor immunity through conventional and natural killer T cells. ACS Nano. 2019;13:1655–1669. doi: 10.1021/acsnano.8b07660
  • Ganley M, Holz LE, Minnell JJ, et al. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat Immunol. 2023;24(9):1487–98. doi: 10.1038/s41590-023-01562-6
  • Guevara ML, Jilesen Z, Stojdl D, et al. Codelivery of mRNA with α-Galactosylceramide Using a new lipopolyplex formulation induces a strong antitumor response upon intravenous administration. ACS Omega. 2019;4(8):13015–13026. doi: 10.1021/acsomega.9b00489
  • Verbeke R, Lentacker I, Wayteck L, et al. Co-delivery of nucleoside-modified mRNA and TLR agonists for cancer immunotherapy: restoring the immunogenicity of immunosilent mRNA. J Control Release. 2017;266:287–300. doi: 10.1016/j.jconrel.2017.09.041
  • Pan L, Zhang L, Deng W, et al. Spleen-selective co-delivery of mRNA and TLR4 agonist-loaded LNPs for synergistic immunostimulation and Th1 immune responses. J Control Release. 2023;357:133–48. doi: 10.1016/j.jconrel.2023.03.041
  • Li B, Jiang AY, Raji I, et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat Biomed Eng. 2023. doi: 10.1038/s41551-023-01082-6
  • Oyama R, Ishigame H, Tanaka H, et al. An ionizable lipid material with a vitamin E scaffold as an mRNA vaccine platform for efficient cytotoxic T cell responses. ACS Nano. 2023;17(19):18758–74. doi: 10.1021/acsnano.3c02251
  • Zhang Y, Yan J, Hou X, et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2. Nano Lett. 2023;23(7):2593–600. doi: 10.1021/acs.nanolett.2c04883
  • Wang Y, Zhang L, Xu Z, et al. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol Ther. 2018;26(2):420–34. doi: 10.1016/j.ymthe.2017.11.009
  • Fotin-Mleczek M, Duchardt KM, Lorenz C, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J Immunother. 2011;34(1):1–15. doi: 10.1097/CJI.0b013e3181f7dbe8
  • Son S, Nam J, Zenkov I, et al. Sugar-Nanocapsules Imprinted with microbial molecular patterns for mRNA vaccination. Nano Lett. 2020;20(3):1499–509. doi: 10.1021/acs.nanolett.9b03483
  • Duan X, Zhang Y, Guo M, et al. Sodium alginate coating simultaneously increases the biosafety and immunotherapeutic activity of the cationic mRNA nanovaccine. Acta Pharm Sin B. 2023;13(3):942–54. doi: 10.1016/j.apsb.2022.08.015
  • Huang P, Jiang L, Pan H, et al. An integrated polymeric mRNA vaccine without inflammation side effects for cellular immunity mediated cancer therapy. Adv Mater. 2023;35(3):e2207471. doi: 10.1002/adma.202207471
  • Van Lint S, Goyvaerts C, Maenhout S, et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res. 2012;72(7):1661–71. doi: 10.1158/0008-5472.can-11-2957
  • Tse SW, McKinney K, Walker W, et al. mRNA-encoded, constitutively active STINGV155M is a potent genetic adjuvant of antigen-specific CD8+ T cell response. Mol Ther. 2021;29(7):2227–2238. doi: 10.1016/j.ymthe.2021.03.002
  • Blakney AK, McKay PF, Bouton CR, et al. Innate inhibiting proteins enhance expression and immunogenicity of self-amplifying RNA. Mol Ther. 2021;29:1174–1185. doi: 10.1016/j.ymthe.2020.11.011
  • Beissert T, Koste L, Perkovic M, et al. Improvement of in vivo expression of genes delivered by self-amplifying RNA using vaccinia virus immune evasion proteins. Hum Gene Ther. 2017;28(12):1138–46. doi: 10.1089/hum.2017.121
  • Uchida S, Yoshinaga N, Yanagihara K, et al. Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly a sequences for effective vaccination. Biomaterials. 2018;150:162–170. doi: 10.1016/j.biomaterials.2017.09.033
  • Tockary TA, Abbasi S, Matsui-Masai M, et al. Comb-structured mRNA vaccine tethered with short double-stranded RNA adjuvants maximizes cellular immunity for cancer treatment. Proc Natl Acad Sci, USA. 2023;120(29):e2214320120. doi: 10.1073/pnas.2214320120
  • Hassett KJ, Benenato KE, Jacquinet E, et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol Ther Nucleic Acids. 2019;15:1–11. doi: 10.1016/j.omtn.2019.01.013
  • Blakney AK, McKay PF, Hu K, et al. Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. J Control Release. 2021;338:201–10. doi: 10.1016/j.jconrel.2021.08.029
  • Sittplangkoon C, Alameh MG, Weissman D, et al. mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. Front Immunol. 2022;13:983000. doi: 10.3389/fimmu.2022.983000
  • Kumar R, Santa Chalarca CF, Bockman MR, et al. Polymeric delivery of therapeutic nucleic acids. Chem Rev. 2021;121(18):11527–652. doi: 10.1021/acs.chemrev.0c00997
  • Kallen KJ, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive((R)) vaccines. Hum Vaccin Immunother. 2013;9(10):2263–76. doi: 10.4161/hv.25181
  • Wegmann F, Gartlan KH, Harandi AM, et al. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nature Biotechnol. 2012;30(9):883–8. doi: 10.1038/nbt.2344
  • Gong T, Liu L, Jiang W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20(2):95–112. doi: 10.1038/s41577-019-0215-7
  • Vogel AB, Lambert L, Kinnear E, et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther. 2018;26(2):446–55. doi: 10.1016/j.ymthe.2017.11.017
  • Hồ N, Hughes S, Tạ V, et al. Safety and immunogenicity and efficacy of the self-amplifying mRNA ARCT-154 COVID-19 vaccine. Res Square. 2023. doi: 10.21203/rs.3.rs-3329097/v1
  • Zhong Z, Portela Catani JP, Mc Cafferty S, et al. Immunogenicity and protection efficacy of a naked self-replicating mRNA-based zika virus vaccine. Vaccines (Basel). 2019;7(3):96. doi: 10.3390/vaccines7030096
  • Tregoning JS, Stirling DC, Wang Z, et al. Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines. Mol Ther Nucleic Acids. 2023;31:29–42. doi: 10.1016/j.omtn.2022.11.024
  • Yoshinaga N, Uchida S, Naito M, et al. Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials. 2019;197:255–67. doi: 10.1016/j.biomaterials.2019.01.023
  • Yoshinaga N, Cho E, Koji K, et al. Bundling mRNA strands to prepare Nano-assemblies with enhanced stability towards RNase for in vivo delivery. Angew Chem Int Ed. 2019;58(33):11360–3. doi: 10.1002/anie.201905203
  • Oberli MA, Reichmuth AM, Dorkin JR, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017;17(3):1326–35. doi: 10.1021/acs.nanolett.6b03329
  • Pardi N, Hogan MJ, Naradikian MS, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215(6):1571–88. doi: 10.1084/jem.20171450
  • Melamed JR, Hajj KA, Chaudhary N, et al. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release. 2021;341:206–214. doi: 10.1016/j.jconrel.2021.11.022
  • Bernard M-C, Bazin E, Petiot N, et al. The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanoparticle delivery system. Mol Ther Nucleic Acids. 2023;32:794–806. doi: 10.1016/j.omtn.2023.05.004
  • Gebre MS, Rauch S, Roth N, et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature. 2022;601(7893):410–4. doi: 10.1038/s41586-021-04231-6
  • Pollard C, Rejman J, De Haes W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther. 2013;21(1):251–9. doi: 10.1038/mt.2012.202
  • De Beuckelaer A, Pollard C, Van Lint S, et al. Type I interferons interfere with the capacity of mRNA lipoplex vaccines to elicit cytolytic T cell responses. Mol Ther. 2016;24(11):2012–20. doi: 10.1038/mt.2016.161
  • Broos K, Van der Jeught K, Puttemans J, et al. Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon. Mol Ther Nucleic Acids. 2016;5:e326. doi: 10.1038/mtna.2016.38
  • Van Hoecke L, Roose K, Ballegeer M, et al. The opposing effect of type I IFN on the T cell response by non-modified mRNA-lipoplex vaccines is determined by the route of administration. Mol Ther Nucleic Acids. 2020;22:373–81. doi: 10.1016/j.omtn.2020.09.004
  • Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol. 2015;15(4):231–42. doi: 10.1038/nri3806
  • Qin Z, Bouteau A, Herbst C, et al. Pre-exposure to mRNA-LNP inhibits adaptive immune responses and alters innate immune fitness in an inheritable fashion. PLoS Pathog. 2022;18(9):e1010830. doi: 10.1371/journal.ppat.1010830
  • Hall VG, Ferreira VH, Wood H, et al. Delayed-interval BNT162b2 mRNA COVID-19 vaccination enhances humoral immunity and induces robust T cell responses. Nat Immunol. 2022;23(3):380–5. doi: 10.1038/s41590-021-01126-6
  • Thomas SN, Rohner NA, Edwards EE. Implications of Lymphatic Transport to Lymph Nodes in immunity and immunotherapy. Annu Rev Biomed Eng. 2016;18(1):207–233. doi: 10.1146/annurev-bioeng-101515-014413
  • Boettler T, Csernalabics B, Salie H, et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022;77(3):653–9. doi: 10.1016/j.jhep.2022.03.040
  • Bos JD, Kapsenberg ML. The skin immune system: progress in cutaneous biology. Immunol Today. 1993;14(2):75–8. doi: 10.1016/0167-5699(93)90062-P
  • Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza a virus infection. Nature Biotechnol. 2012;30(12):1210–6. doi: 10.1038/nbt.2436
  • Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–20. doi: 10.1016/s0140-6736(17)31665-3
  • Roozen GVT, Prins MLM, van Binnendijk R, et al. Tolerability, safety and immunogenicity of intradermal delivery of a fractional dose mRNA-1273 SARS-CoV-2 vaccine in healthy adults as a dose sparing strategy. medRxiv. 2021. doi: 10.1101/2021.07.27.21261116
  • Intapiboon P, Seepathomnarong P, Ongarj J, et al. Immunogenicity and safety of an intradermal BNT162b2 mRNA vaccine booster after two doses of inactivated SARS-CoV-2 vaccine in healthy population. Vaccines (Basel). 2021;9(12):1375. doi: 10.3390/vaccines9121375
  • Kübler H, Scheel B, Gnad-Vogt U, et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer. 2015;3(1):26. doi: 10.1186/s40425-015-0068-y
  • Golombek S, Pilz M, Steinle H, et al. Intradermal delivery of synthetic mRNA using hollow microneedles for efficient and Rapid Production of Exogenous Proteins in skin. Mol Ther Nucleic Acids. 2018;11:382–92. doi: 10.1016/j.omtn.2018.03.005
  • Peracchia MT, Fattal E, Desmaele D, et al. Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release. 1999;60(1):121–128. doi: 10.1016/s0168-3659(99)00063-2
  • Liu S, Wang X, Yu X, et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J Am Chem Soc. 2021;143(50):21321–30. doi: 10.1021/jacs.1c09822
  • Chen P, He X, Hu Y, et al. Spleen-targeted mRNA delivery by amphiphilic carbon dots for tumor immunotherapy. ACS Appl Mater Interfaces. 2023;15(16):19937–50. doi: 10.1021/acsami.3c00494
  • Perche F, Benvegnu T, Berchel M, et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine. 2011;7(4):445–53. doi: 10.1016/j.nano.2010.12.010
  • Van der Jeught K, De Koker S, Bialkowski L, et al. Dendritic Cell Targeting mRNA Lipopolyplexes Combine Strong Antitumor T-Cell Immunity with Improved Inflammatory Safety. ACS Nano. 2018;12(10):9815–9829. doi: 10.1021/acsnano.8b00966
  • Lavelle EC, Ward RW. Mucosal vaccines — fortifying the frontiers. Nat Rev Immunol. 2022;22(4):236–250. doi: 10.1038/s41577-021-00583-2
  • Phua KK, Staats HF, Leong KW, et al. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci Rep. 2014;4(1):5128. doi: 10.1038/srep05128
  • Mai Y, Guo J, Zhao Y, et al. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell Immunol. 2020;354:104143. doi: 10.1016/j.cellimm.2020.104143
  • Li M, Zhao M, Fu Y, et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J Control Release. 2016;228:9–19. doi: 10.1016/j.jconrel.2016.02.043
  • Li M, Li Y, Peng K, et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses. Acta Biomater. 2017;64:237–48. doi: 10.1016/j.actbio.2017.10.019
  • Sahni N, Cheng Y, Middaugh CR, et al. Vaccine Delivery. Drug Delivery. 2016;623–654.
  • Cook IF. Subcutaneous vaccine administration – an outmoded practice. Hum Vaccin Immunother. 2021;17(5):1329–1341. doi: 10.1080/21645515.2020.1814094
  • Lee J, Kim D, Byun J, et al. In vivo fate and intracellular trafficking of vaccine delivery systems. Adv Drug Deliv Rev. 2022;186:114325. doi: 10.1016/j.addr.2022.114325
  • Jiang H, Wang Q, Sun X. Lymph node targeting strategies to improve vaccination efficacy. J Control Release. 2017;267:47–56. doi: 10.1016/j.jconrel.2017.08.009
  • Nakamura T, Sato Y, Yamada Y, et al. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev. 2022;188:114417. doi: 10.1016/j.addr.2022.114417
  • Nakamura T, Harashima H. Dawn of lipid nanoparticles in lymph node targeting: potential in cancer immunotherapy. Adv Drug Deliv Rev. 2020;167:78–88. doi: 10.1016/j.addr.2020.06.003
  • Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803. doi: 10.1038/nrd4608
  • Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–13. doi: 10.1002/eji.200737984
  • Ryan GM, Kaminskas LM, Porter CJ. Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release. 2014;193:241–256. doi: 10.1016/j.jconrel.2014.04.051
  • Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev. 2001;50(1–2):3–20. doi: 10.1016/s0169-409x(01)00150-8
  • Engin AB, Nikitovic D, Neagu M, et al. Mechanistic understanding of nanoparticles’ interactions with extracellular matrix: the cell and immune system. Part Fibre Toxicol. 2017;14(1):22. doi: 10.1186/s12989-017-0199-z
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6(1):12–21. doi: 10.1002/smll.200901158
  • Wang Y, Wang J, Zhu D, et al. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B. 2021;11(4):886–902. doi: 10.1016/j.apsb.2021.03.007
  • Oussoren C, Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: III. Influence of surface modification with poly(ethyleneglycol). Pharm Res. 1997;14(10):1479–84. doi: 10.1023/a:1012145410859
  • Ding Y, Li Z, Jaklenec A, et al. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev. 2021;179:113914. doi: 10.1016/j.addr.2021.113914
  • McCright J, Skeen C, Yarmovsky J, et al. Nanoparticles with dense poly(ethylene glycol) coatings with near neutral charge are maximally transported across lymphatics and to the lymph nodes. Acta Biomater. 2022;145:146–58. doi: 10.1016/j.actbio.2022.03.054
  • Moghimi SM. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes. Biomaterials. 2006;27(1):136–44. doi: 10.1016/j.biomaterials.2005.05.082
  • Zhuang Y, Ma Y, Wang C, et al. Pegylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J Control Release. 2012;159(1):135–42. doi: 10.1016/j.jconrel.2011.12.017
  • Suk JS, Xu Q, Kim N, et al. Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51. doi: 10.1016/j.addr.2015.09.012
  • Nahar UJ, Toth I, Skwarczynski M. Mannose in vaccine delivery. J Control Release. 2022;351:284–300. doi: 10.1016/j.jconrel.2022.09.038
  • Cruz LJ, Rosalia RA, Kleinovink JW, et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release. 2014;192:209–218. doi: 10.1016/j.jconrel.2014.07.040
  • Wilson NS, El-Sukkari D, Belz GT, et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood. 2003;102(6):2187–94. doi: 10.1182/blood-2003-02-0513
  • Kreiter S, Selmi A, Diken M, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010;70(22):9031–40. doi: 10.1158/0008-5472.can-10-0699
  • Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6. doi: 10.1038/nature23003
  • Lindsay KE, Bhosle SM, Zurla C, et al. Visualization of early events in mRNA vaccine delivery in non-human primates via PET–CT and near-infrared imaging. Nat Biomed Eng. 2019;3(5):371–380. doi: 10.1038/s41551-019-0378-3
  • Roltgen K, Nielsen SCA, Silva O, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022;185(6):1025–1040.e14. doi: 10.1016/j.cell.2022.01.018
  • Takanashi A, Pouton CW, Al-Wassiti H. Delivery and expression of mRNA in the secondary lymphoid organs drive immune responses to lipid nanoparticle-mRNA vaccines after intramuscular injection. Mol Pharm. 2023;20(8):3876–85. doi: 10.1021/acs.molpharmaceut.2c01024
  • Hassett KJ, Higgins J, Woods A, et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J Control Release. 2021;335:237–46. doi: 10.1016/j.jconrel.2021.05.021
  • Shi Y, Huang J, Liu Y, et al. Structural and biochemical characteristics of mRNA nanoparticles determine anti–SARS-CoV-2 humoral and cellular immune responses. Sci Adv. 2022;8(47):eabo1827. doi: 10.1126/sciadv.abo1827
  • Shi Y, Lu Y, Qin B, et al. Antigen transfer from non-APCs to APCs impacts the efficacy and safety of protein- and mRNA- based vaccines. Nano Today. 2021;41:41. doi: 10.1016/j.nantod.2021.101326
  • Boyle JS, Koniaras C, Lew AM. Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int Immunol. 1997;9(12):1897–1906. doi: 10.1093/intimm/9.12.1897
  • Willis E, Pardi N, Parkhouse K, et al. Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice. Sci Transl Med. 2020;12(525):eaav5701. doi: 10.1126/scitranslmed.aav5701
  • Amano T, Yu H, Amano M, et al. Controllable self-replicating RNA vaccine delivered intradermally elicits predominantly cellular immunity. iScience. 2023;26(4):106335. doi: 10.1016/j.isci.2023.106335
  • Kimura T, Leal JM, Simpson A, et al. A localizing nanocarrier formulation enables multi-target immune responses to multivalent replicating RNA with limited systemic inflammation. Mol Ther. 2023;31(8):2360–75. doi: 10.1016/j.ymthe.2023.06.017
  • Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8 + T cell response. Proc Natl Acad Sci U S A. 2022;119(34):e2207841119. doi: 10.1073/pnas.2207841119
  • Di J, Du Z, Wu K, et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm Res. 2022;39(1):105–14. doi: 10.1007/s11095-022-03166-5
  • Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64. doi: 10.1038/mt.2010.85
  • Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci USA. 2021;118(52):e2109256118. doi: 10.1073/pnas.2109256118
  • Combadiere B, Liard C. Transcutaneous and intradermal vaccination. Hum Vaccin. 2011;7(8):811–27. doi: 10.4161/hv.7.8.16274
  • Sophonmanee R, Ongarj J, Seeyankem B, et al. T-Cell responses induced by an intradermal BNT162b2 mRNA vaccine booster following primary vaccination with inactivated SARS-CoV-2 vaccine. Vaccines (Basel). 2022;10(9):1494. doi: 10.3390/vaccines10091494
  • Blakney AK, Zhu Y, McKay PF, et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, Bioreducible, cationic polymer. ACS Nano. 2020;14(5):5711–27. doi: 10.1021/acsnano.0c00326
  • Anderluzzi G, Lou G, Woods S, et al. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. J Control Release. 2022;342:388–99. doi: 10.1016/j.jconrel.2021.12.008
  • Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine. 2008;26(26):3197–208. doi: 10.1016/j.vaccine.2008.03.095
  • Shimizu S, Tanaka R, Itoh E, et al. Performance and usability evaluation of novel intradermal injection device Immucise™ and reanalysis of intradermal administration trials of influenza vaccine for the elderly. Vaccine. 2022;40(6):873–879. doi: 10.1016/j.vaccine.2021.12.061
  • Vander Straeten A, Sarmadi M, Daristotle JL, et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nature Biotechnol. 2023;42(3):510–517. doi: 10.1038/s41587-023-01774-z
  • Baharom F, Ramirez-Valdez RA, Tobin KKS, et al. Intravenous nanoparticle vaccination generates stem-like TCF1(+) neoantigen-specific CD8(+) T cells. Nat Immunol. 2021;22(1):41–52. doi: 10.1038/s41590-020-00810-3
  • Lewis SM, Williams A, Eisenbarth SC. Structure and function of the immune system in the spleen. Sci Immunol. 2019;4(33). doi: 10.1126/sciimmunol.aau6085
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70. doi: 10.1038/nbt1340
  • Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells — gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol. 2018;15(9):555–567. doi: 10.1038/s41575-018-0020-y
  • Jacobs F, Wisse E, De Geest B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am J Pathol. 2010;176(1):14–21. doi: 10.2353/ajpath.2010.090136
  • Walkey CD, Olsen JB, Guo H, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–2147. doi: 10.1021/ja2084338
  • Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nature Mater. 2016;15(11):1212–21. doi: 10.1038/nmat4718
  • Pombo Garcia K, Zarschler K, Barbaro L, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 2014;10(13):2516–2529. doi: 10.1002/smll.201303540
  • Dirisala A, Uchida S, Toh K, et al. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci Adv. 2020;6(26):eabb8133. doi: 10.1126/sciadv.abb8133
  • Cataldi M, Vigliotti C, Mosca T, et al. Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int J Mol Sci. 2017;18(6):1249. doi: 10.3390/ijms18061249
  • Kutscher HL, Chao P, Deshmukh M, et al. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release. 2010;143(1):31–7. doi: 10.1016/j.jconrel.2009.12.019
  • Pektor S, Hilscher L, Walzer KC, et al. In vivo imaging of the immune response upon systemic RNA cancer vaccination by FDG-PET. EJNMMI Res. 2018;8(1):80. doi: 10.1186/s13550-018-0435-z
  • Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–cas gene editing. Nat Nanotech. 2020;15(4):313–320. doi: 10.1038/s41565-020-0669-6
  • Tang X, Zhang J, Sui D, et al. Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J Control Release. 2023;364:529–45. doi: 10.1016/j.jconrel.2023.11.008
  • Lamichhane A, Azegamia T, Kiyonoa H. The mucosal immune system for vaccine development. Vaccine. 2014;32(49):6711–23. doi: 10.1016/j.vaccine.2014.08.089
  • Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity. 2022;55(5):749–80. doi: 10.1016/j.immuni.2022.04.013
  • Huang M, Zhang M, Zhu H, et al. Mucosal vaccine delivery: a focus on the breakthrough of specific barriers. Acta Pharm Sin B. 2022;12(9):3456–74. doi: 10.1016/j.apsb.2022.07.002
  • Lijek RS, Luque SL, Liu Q, et al. Protection from the acquisition of staphylococcus aureus nasal carriage by cross-reactive antibody to a pneumococcal dehydrogenase. Proc Natl Acad Sci USA. 2012;109(34):13823–8. doi: 10.1073/pnas.1208075109
  • Jang YH, Byun YH, Lee YJ, et al. Cold-adapted pandemic 2009 H1N1 influenza virus live vaccine elicits cross-reactive immune responses against seasonal and H5 influenza A viruses. J Virol. 2012;86(10):5953–8. doi: 10.1128/JVI.07149-11
  • Kraehenbuhl JP, Neutra MR. Molecular and cellular basis of immune protection of mucosal surfaces. Physiol Rev. 1992;72(4):853–79. doi: 10.1152/physrev.1992.72.4.853
  • Rhee JH. Current and new approaches for mucosal vaccine delivery. Mucosal Vaccines. 2020;325–356.
  • Boyaka PN. Inducing mucosal IgA: a challenge for vaccine adjuvants and delivery systems. J Immunol. 2017;199(1):9–16. doi: 10.4049/jimmunol.1601775
  • van Splunter M, van Hoffen E, Floris-Vollenbroek EG, et al. Oral cholera vaccination promotes homing of IgA(+) memory B cells to the large intestine and the respiratory tract. Mucosal Immunol. 2018;11(4):1254–1264. doi: 10.1038/s41385-018-0006-7
  • Li M, Wang Y, Sun Y, et al. Mucosal vaccines: Strategies and challenges. Immunol Lett. 2020;217:116–25. doi: 10.1016/j.imlet.2019.10.013
  • Suberi A, Grun MK, Mao T, et al. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci Transl Med. 2023;15(709):eabq0603. doi: 10.1126/scitranslmed.abq0603
  • Uchida S, Itaka K, Chen Q, et al. Pegylated polyplex with optimized PEG shielding enhances gene introduction in lungs by minimizing inflammatory responses. Mol Ther. 2012;20(6):1196–203. doi: 10.1038/mt.2012.20
  • Cabral H, Li J, Miyata K, et al. Controlling the biodistribution and clearance of nanomedicines. Nat Rev Bioeng. 2023;2(3):214–232. doi: 10.1038/s44222-023-00138-1
  • Rief W. Fear of adverse effects and COVID-19 vaccine hesitancy: recommendations of the treatment expectation expert group. JAMA Health Forum. 2021;2(4):e210804–e. doi: 10.1001/jamahealthforum.2021.0804
  • Debes AK, Xiao S, Colantuoni E, et al. Association of vaccine type and prior SARS-CoV-2 infection with symptoms and antibody measurements following vaccination among health care workers. JAMA Intern Med. 2021;181(12):1660–2. doi: 10.1001/jamainternmed.2021.4580
  • Bauernfeind S, Salzberger B, Hitzenbichler F, et al. Association between reactogenicity and immunogenicity after vaccination with BNT162b2. Vaccines (Basel). 2021;9(10):1089. doi: 10.3390/vaccines9101089
  • Oda Y, Kumagai Y, Kanai M, et al. Booster dose of self-amplifying SARS-CoV-2 RNA vaccine vs. mRNA vaccine: a phase 3 comparison of ARCT-154 with Comirnaty®. medRxiv. 2023. doi: 10.1101/2023.07.13.23292597
  • Qu L, Yi Z, Shen Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 2022;185(10):1728–1744.e16. doi: 10.1016/j.cell.2022.03.044
  • Tam HH, Melo MB, Kang M, et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc Natl Acad Sci USA. 2016;113(43):E6639–E48. doi: 10.1073/pnas.1606050113
  • Cirelli KM, Carnathan DG, Nogal B, et al. Slow Delivery Immunization Enhances HIV Neutralizing Antibody and germinal center responses via modulation of Immunodominance. Cell. 2019;177(5):1153–1171.e28. doi: 10.1016/j.cell.2019.04.012
  • Chen R, Zhang H, Yan J, et al. Scaffold-mediated delivery for non-viral mRNA vaccines. Gene Ther. 2018;25(8):556–67. doi: 10.1038/s41434-018-0040-9
  • Yin Y, Li X, Ma H, et al. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021;21(5):2224–31. doi: 10.1021/acs.nanolett.0c05039
  • Hoffmann MAG, Yang Z, Huey-Tubman KE, et al. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines. Cell. 2023;186(11):2380–2391.e9. doi: 10.1016/j.cell.2023.04.024