320
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

The RNA-DNA world and the emergence of DNA-encoded heritable traits

ORCID Icon & ORCID Icon
Pages 1-9 | Accepted 01 May 2024, Published online: 24 May 2024

References

  • Brenner S, Jacob F, Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961 May;190(4776):576–581. doi: 10.1038/190576a0
  • Gros F, Hiatt H, Gilbert W, et al. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961 May;190(4776):581–585. doi: 10.1038/190581a0
  • Kruger K, Grabowski PJ, Zaug AJ, et al. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell. 1982 nov;31(1):147–157. doi: 10.1016/0092-8674(82)90414-7
  • Stark BC, Kole R, Bowman EJ, et al. Ribonuclease p: an enzyme with an essential RNA component. Proc Natl Acad Sci. 1978 Aug;75(8):3717–3721. doi: 10.1073/pnas.75.8.3717
  • Guerrier-Takada C, Gardiner K, Marsh T, et al. The RNA moiety of ribonuclease p is the catalytic subunit of the enzyme. Cell. 1983 dec;35(3):849–857. doi: 10.1016/0092-8674(83)90117-4
  • Matthew WP, Gerland B, John DS. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009 May;459(7244):239–242. doi: 10.1038/nature08013
  • Cafferty BJ, Fialho DM, Khanam J, et al. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun. 2016 Apr;7(1):11328. doi: 10.1038/ncomms11328
  • Becker S, Feldmann J, Wiedemann S, et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science. 2019 Oct;366(6461):76–82. doi: 10.1126/science.aax2747
  • Xu J, Chmela V, Green NJ, et al. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature. 2020 June;582(7810):60–66. doi: 10.1038/s41586-020-2330-9
  • Xu J, Green NJ, Russell DA, et al. Prebiotic photochemical coproduction of purine ribo- and deoxyribonucleosides. J Am Chem Soc. 2021 Sep;143(36):14482–14486. doi: 10.1021/jacs.1c07403
  • Adamala K, Szostak JW. Nonenzymatic template-directed RNA synthesis inside model protocells. Science. 2013 Nov;342(6162):1098–1100. doi: 10.1126/science.1241888
  • Yeonwha Song E, Ivanhoe Jiménez E, Lin H, et al. Prebiotically plausible RNA activation compatible with ribozyme-catalyzed ligation. Angewandte Chemie. 2020 Dec;60(6):2952–2957. doi: 10.1002/anie.202010918
  • Jauker M, Griesser H, Richert C. Copying of RNA sequences without pre-activation. Angewandte Chemie. 2015 Oct;54(48):14559–14563. doi: 10.1002/anie.201506592
  • Damer B, Deamer D. The hot spring hypothesis for an origin of life. Astrobiology. 2020 Apr;20(4):429–452. doi: 10.1089/ast.2019.2045
  • Roy S, Sengupta S. The effect of environment on the evolution and proliferation of protocells of increasing complexity. Life. 2022 Aug;12(8):1227. doi: 10.3390/life12081227
  • Roy S, Bapat NV, Derr J, et al. Emergence of ribozyme and tRNA-like structures from mineral-rich muddy pools on prebiotic earth. J Theor Biol. 2020 Dec;506:110446. doi: 10.1016/j.jtbi.2020.110446
  • Leu K, Kervio E, Obermayer B, et al. Cascade of reduced speed and accuracy after errors in enzyme-free copying of nucleic acid sequences. J Am Chem Soc. 2012 Dec;135(1):354–366. doi: 10.1021/ja3095558
  • Dingle K, Ghaddar F, Šulc P, et al. Phenotype bias determines how natural RNA structures occupy the morphospace of all possible shapes. Mol Biol Evol. 2021 Sep;39(1). doi: 10.1093/molbev/msab280
  • Shah V, de Bouter J, Quinn P, et al. Survival of RNA replicators is much easier in protocells than in surface-based, spatial systems. Life. 2019 Aug;9(3):65. doi: 10.3390/life9030065
  • Kusumoto-Matsuo R, Kanda T, Kukimoto I. Rolling circle replication of human papillomavirus type 16 DNA in epithelial cell extracts. Genes Cells. 2010 Nov;16(1):23–33. doi: 10.1111/j.1365-2443.2010.01458.x
  • Daròs J-A, Elena SF, Flores R. Viroids: an Ariadne's thread into the RNA labyrinth. EMBO Rep. 2006 Jun;7(6):593–598. doi: 10.1038/sj.embor.7400706
  • Flores R, Gas M-E, Molina-Serrano D, et al. Viroid replication: Rolling-circles, enzymes and ribozymes. Viruses. 2009 Sep;1(2):317–334. doi: 10.3390/v1020317
  • Tupper AS, Higgs PG. Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life. J Theor Biol. 2021 oct;527:110822. doi: 10.1016/j.jtbi.2021.110822
  • Rivera-Madrinan F, Di Iorio K, Higgs PG. Rolling circles as a means of encoding genes in the RNA world. Life. 2022 Sep;12(9):1373. doi: 10.3390/life12091373
  • Roy S, Sengupta S. Evolution towards increasing complexity through functional diversification in a protocell model of the RNA world. Proc R Soc B. 2021 Nov;288(1963). doi: 10.1098/rspb.2021.2098
  • Takeuchi N, Hogeweg P, Kaneko K. The origin of a primordial genome through spontaneous symmetry breaking. Nat Commun. 2017 Aug;8(1). doi: 10.1038/s41467-017-00243-x
  • Rajamani S, Vlassov A, Benner S, et al. Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Origins Life Evol Biosphere. 2007 Nov;38(1):57–74. doi: 10.1007/s11084-007-9113-2
  • Huang W, James PF. One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J Am Chem Soc. 2006 Jul;128(27):8914–8919. doi: 10.1021/ja061782k
  • Hassenkam T, Damer B, Mednick G, et al. AFM images of viroid-sized rings that self-assemble from mononucleotides through wet–dry cycling: Implications for the origin of life. Life. 2020 Nov;10(12):321. doi: 10.3390/life10120321
  • Leu K, Obermayer B, Rajamani S, et al. The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res. 2011 June;39(18):8135–8147. doi: 10.1093/nar/gkr525
  • Horning DP, Joyce GF. Amplification of RNA by an RNA polymerase ribozyme. Proc Natl Acad Sci. 2016 Aug;113(35):9786–9791. doi: 10.1073/pnas.1610103113
  • Samanta B, Joyce GF. A reverse transcriptase ribozyme. Elife. 2017 Sep;6. doi: 10.7554/eLife.31153
  • Horning DP, Bala S, Chaput JC, et al. RNA-catalyzed polymerization of deoxyribose, threose, and arabinose nucleic acids. ACS Synth Biol. 2019 May;8(5):955–961. doi: 10.1021/acssynbio.9b00044
  • Kervio E, Claasen B, Steiner UE, et al. The strength of the template effect attracting nucleotides to naked DNA. Nucleic Acids Res. 2014 May;42(11):7409–7420. doi: 10.1093/nar/gku314
  • Bapat NV, Rajamani S. Effect of co-solutes on template-directed nonenzymatic replication of nucleic acids. J Mol Evol. 2015 Oct;81(3–4):72–80. doi: 10.1007/s00239-015-9700-1
  • Attwater J, Raguram A, Morgunov AS, et al. Ribozyme-catalysed RNA synthesis using triplet building blocks. Elife. 2018 May;7. doi: 10.7554/eLife.35255
  • Jaeger JA, Turner DH, Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706
  • SantaLucia J, Hicks D. The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct. 2004 June;33(1):415–440. doi: 10.1146/annurev.biophys.32.110601.141800
  • Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 2009 Oct;38(suppl_1):D280–D282. doi: 10.1093/nar/gkp892
  • Ichihashi N, Usui K, Kazuta Y, et al. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nat Commun. 2013 Oct;4(1). doi: 10.1038/ncomms3494
  • Bansho Y, Furubayashi T, Ichihashi N, et al. Host–parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proc Natl Acad Sci. 2016 Mar;113(15):4045–4050. doi: 10.1073/pnas.1524404113
  • Yoshiyama T, Ichii T, Yomo T, et al. Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Sci Rep. 2018 Aug;8(1). doi: 10.1038/s41598-018-30374-0
  • Furubayashi T, Ueda K, Bansho Y, et al. Emergence and diversification of a host-parasite RNA ecosystem through Darwinian evolution. Elife. 2020 July;9. doi: 10.7554/eLife.56038
  • Mizuuchi R, Furubayashi T, Ichihashi N. Evolutionary transition from a single RNA replicator to a multiple replicator network. Nat Commun. 2022 Mar;13(1). doi: 10.1038/s41467-022-29113-x
  • Drobot B, Iglesias-Artola JM, Le Vay K, et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat Commun. 2018 Sep;9(1). doi: 10.1038/s41467-018-06072-w
  • Christine DK. Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc Chem Res. 2012 Feb;45(12):2114–2124. doi: 10.1021/ar200294y
  • Poudyal RR, Pir Cakmak F, Keating CD, et al. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. Biochemistry. 2018 Mar;57(17):2509–2519. doi: 10.1021/acs.biochem.8b00081
  • Abbas M, Lipiński WP, Wang J, et al. Peptide-based coacervates as biomimetic protocells. Chem Soc Rev. 2021;50(6):3690–3705. doi: 10.1039/D0CS00307G
  • Donau C, Späth F, Sosson M, et al. Active coacervate droplets as a model for membraneless organelles and protocells. Nat Commun. 2020 Oct;11(1). doi: 10.1038/s41467-020-18815-9
  • Zwicker D, Seyboldt R, Weber CA, et al. Growth and division of active droplets provides a model for protocells. Nat Phys. 2016 Dec;13(4):408–413. doi: 10.1038/nphys3984
  • Fares HM, Marras AE, Ting JM, et al. Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates. Nat Commun. 2020 Oct;11(1). doi: 10.1038/s41467-020-19184-z
  • Poudyal RR, Guth-Metzler RM, Veenis AJ, et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat Commun. 2019 Jan;10(1). doi: 10.1038/s41467-019-08353-4
  • Le Vay K, Salibi E, Basusree Ghosh T-YDT, et al. Ribozyme activity modulates the physical properties of RNA–peptide coacervates. eLife. 2023 June;12:e83543. doi: 10.7554/eLife.83543
  • Poudyal RR, Keating CD, Bevilacqua PC. Polyanion-assisted ribozyme catalysis inside complex coacervates. ACS Chem Biol. 2019 June;14(6):1243–1248. doi: 10.1021/acschembio.9b00205
  • Nakashima KK, van Haren MHI, André AAM, et al. Active coacervate droplets are protocells that grow and resist Ostwald ripening. Nat Commun. 2021 Jun;12(1). doi: 10.1038/s41467-021-24111-x
  • Chen IA, Roberts RW, Szostak JW. The emergence of competition between model protocells. Science. 2004 Sep;305(5689):1474–1476. doi: 10.1126/science.1100757
  • Adamala K, Jack WS. Competition between model protocells driven by an encapsulated catalyst. Nat Chem. 2013 May;5(6):495–501. doi: 10.1038/nchem.1650
  • Hayden EJ, Lehman N. Self-assembly of a group i intron from inactive oligonucleotide fragments. Chem Biol. 2006 Aug;13(8):909–918. doi: 10.1016/j.chembiol.2006.06.014
  • Vaidya N, Manapat ML, Chen IA, et al. Spontaneous network formation among cooperative RNA replicators. Nature. 2012 Oct;491(7422):72–77. doi: 10.1038/nature11549
  • Zhou L, O’Flaherty DK, Szostak JW. Assembly of a ribozyme ligase from short oligomers by nonenzymatic ligation. J Am Chem Soc. 2020 Aug;142(37):15961–15965. doi: 10.1021/jacs.0c06722
  • Ameta S, Kumar M, Chakraborty N, et al. Multispecies autocatalytic RNA reaction networks in coacervates. Communications Chemistry. 2023 May;6(1). doi: 10.1038/s42004-023-00887-5
  • Woese C. The universal ancestor. Proc Natl Acad Sci. 1998 June;95(12):6854–6859. doi: 10.1073/pnas.95.12.6854