331
Views
0
CrossRef citations to date
0
Altmetric
Research paper

Assessment of different enrichment methods revealed the optimal approach to identify bovine circRnas

, , , , &
Pages 1-13 | Accepted 13 May 2024, Published online: 26 May 2024

References

  • Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ. 2022;29(3):481–491. doi: 10.1038/s41418-022-00948-7
  • Bridges MC, Daulagala AC, Kourtidis A. Lnccation: lncRNA localization and function. J Cell Bio. 2021;220(2):220. doi: 10.1083/jcb.202009045
  • Malmuthuge N, Guan LL. Noncoding RNAs: Regulatory molecules of host–microbiome crosstalk. Trends Microbiol. 2021;29(8):713–724. doi: 10.1016/j.tim.2020.12.003
  • Zhang X-O, Dong R, Zhang Y, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016;26(9):1277–1287. doi: 10.1101/gr.202895.115
  • Rong D, Sun H, Li Z, et al. An emerging function of circRNA-miRnas-mRNA axis in human diseases. Oncotarget. 2017;8(42):73271. doi: 10.18632/oncotarget.19154
  • Kleaveland B, Shi CY, Stefano J, et al. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell. 2018;174(2):350–62. e17. doi: 10.1016/j.cell.2018.05.022
  • Kartha RV, Subramanian S. Competing endogenous RNAs (ceRnas): new entrants to the intricacies of gene regulation. Front Genet. 2014;5:8. doi: 10.3389/fgene.2014.00008
  • Mitra A, Pfeifer K, Park K-S. Circular RNAs and competing endogenous RNA (ceRNA) networks. Transl Cancer Res. 2018;7(S5):S624. doi: 10.21037/tcr.2018.05.12
  • Zheng J, Liu X, Xue Y, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 2017;10(1):1–19. doi: 10.1186/s13045-017-0422-2
  • Wu W, Ji P, Zhao F. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 2020;21(1):1–14. doi: 10.1186/s13059-020-02018-y
  • Robic A, Cerutti C, Kühn C, et al. Comparative analysis of the circular transcriptome in muscle, liver, and testis in three livestock species. Front Genet. 2021;12:660. doi: 10.3389/fgene.2021.665153
  • Hon C-C, Ramilowski JA, Harshbarger J, et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature. 2017;543(7644):199–204. doi: 10.1038/nature21374
  • Suzuki H, Zuo Y, Wang J, et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34(8):e63–e. doi: 10.1093/nar/gkl151
  • Xiao M-S, Wilusz JE. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 2019;47(16):8755–8769. doi: 10.1093/nar/gkz576
  • Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 2014;15(6):9331–9342. doi: 10.3390/ijms15069331
  • Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58(5):870–885. doi: 10.1016/j.molcel.2015.03.027
  • Panda AC, De S, Grammatikakis I, et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRnas. Nucleic Acids Res. 2017;45(12):e116–e. doi: 10.1093/nar/gkx297
  • Pandey PR, Rout PK, Das A, et al. RPAD (RNase R treatment, polyadenylation, and poly (A)+ RNA depletion) method to isolate highly pure circular RNA. Methods. 2019;155:41–48. doi: 10.1016/j.ymeth.2018.10.022
  • Shi H, Zhou Y, Jia E, et al. Comparative analysis of circular RNA enrichment methods. RNA Biol. 2022;19(1):55–67. doi: 10.1080/15476286.2021.2012632
  • Wu W, Zhang J, Cao X, et al. Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing. Nat Commun. 2022;13(1):1–14. doi: 10.1038/s41467-022-30963-8
  • Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLOS Genet. 2013;9(9):e1003777. doi: 10.1371/journal.pgen.1003777
  • Dong R, Ma X-K, Li G-W, et al. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Int J Geno Prot. 2018;16(4):226–233. doi: 10.1016/j.gpb.2018.08.001
  • Zheng Y, Ji P, Chen S, et al. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 2019;11(1):1–20. doi: 10.1186/s13073-019-0614-1
  • Deschamps-Francoeur G, Simoneau J, Scott MS. Handling multi-mapped reads in RNA-seq. Computat Struct Biotechnol J. 2020;18:1569–1576. doi: 10.1016/j.csbj.2020.06.014
  • Dobin A, Gingeras TR. Mapping RNA‐seq reads with STAR. Curr Protoc Bioinform. 2015;51(1):.11.4. 1–.4. 9. doi: 10.1002/0471250953.bi1114s51
  • Hossain ST, Malhotra A, Deutscher MP. How RNase R degrades structured RNA: role of the helicase activity and the S1 domain. J Biol Chem. 2016;291(15):7877–7887. doi: 10.1074/jbc.M116.717991
  • Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet. 2016;17(11):679–692. doi: 10.1038/nrg.2016.114
  • Houseley J, Tollervey D, Preiss T. Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLOS ONE. 2010;5(8):e12271. doi: 10.1371/journal.pone.0012271
  • Quail MA, Kozarewa I, Smith F, et al. A large genome center’s improvements to the Illumina sequencing system. Nat Methods. 2008;5(12):1005–1010. doi: 10.1038/nmeth.1270
  • O’Neil D, Glowatz H, Schlumpberger M. Ribosomal RNA depletion for efficient use of RNA‐seq capacity. Curr Protoc Mol Biol. 2013;103(1):4.19. 1–4. 8. doi: 10.1002/0471142727.mb0419s103
  • Westermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nature Rev Microbiol. 2012;10(9):618–630. doi: 10.1038/nrmicro2852
  • Ma N, Tie C, Yu B, et al. Circular RNAs regulate its parental genes transcription in the AD mouse model using two methods of library construction. Faseb J. 2020;34(8):10342–10356. doi: 10.1096/fj.201903157R
  • Xin R, Gao Y, Gao Y, et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat Commun. 2021;12(1):1–11. doi: 10.1038/s41467-020-20459-8
  • Das D, Das A, Sahu M, et al. Identification and characterization of circular intronic RNAs derived from insulin gene. Int J Mol Sci. 2020;21(12):4302. doi: 10.3390/ijms21124302
  • Qu S, Zhong Y, Shang R, et al. The emerging landscape of circular RNA in life processes. RNA Biol. 2017;14(8):992–999. doi: 10.1080/15476286.2016.1220473
  • Sun L-F, Zhang B, Chen X-J, et al. Circular RNAs in human and vertebrate neural retinas. RNA Biol. 2019;16(6):821–829. doi: 10.1080/15476286.2019.1591034
  • Santos-Rodriguez G, Voineagu I, Weatheritt RJ. Evolutionary dynamics of circular RNAs in primates. Elife. 2021;10:e69148. doi: 10.7554/eLife.69148
  • Xia S, Feng J, Lei L, et al. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform. 2017;18:984–992. doi: 10.1093/bib/bbw081
  • Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16(1):1–16. doi: 10.1186/s13059-014-0571-3
  • Huang R, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124–2HG. Autophagy. 2017;13(10):1722–1741. doi: 10.1080/15548627.2017.1356975
  • Vietrirudan M, Barrington C, Henderson S, et al. Comparative hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Rep. 2015;10(8):1297–1309. doi: 10.1016/j.celrep.2015.02.004
  • Jiang Z, Bo L, Meng Y, et al. Overexpression of homeodomain-interacting protein kinase 2 (HIPK2) attenuates sepsis-mediated liver injury by restoring autophagy. Cell Death Dis. 2018;10(1):1–16. doi: 10.1038/s41419-018-1236-z
  • Sun H-Z, Zhu Z, Zhou M, et al. Gene co-expression and alternative splicing analysis of key metabolic tissues to unravel the regulatory signatures of fatty acid composition in cattle. RNA Biol. 2021;18(6):854–862. doi: 10.1080/15476286.2020.1824060
  • Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202. doi: 10.1016/j.molp.2020.06.009
  • Lee BT, Barber GP, Benet-Pagès A, et al. The UCSC genome browser database: 2022 update. Nucleic Acids Res. 2022;50(D1):D1115–D22. doi: 10.1093/nar/gkab959
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033