824
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The myriad roles of RNA structure in the flavivirus life cycle

, , , , & ORCID Icon
Pages 14-30 | Accepted 16 May 2024, Published online: 26 May 2024

References

  • Gould EA, Solomon T. Pathogenic flaviviruses. Lancet. 2008;371(9611):500–509. doi: 10.1016/S0140-6736(08)60238-X PubMed PMID: 18262042.
  • Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun. 2020;11(1):2130. doi: 10.1038/s41467-020-16010-4 Epub 20200501. PubMed PMID: 32358588; PubMed Central PMCID: PMC7195482.
  • Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 2020;5(6):796–812. doi: 10.1038/s41564-020-0714-0 Epub 20200504. PubMed PMID: 32367055; PubMed Central PMCID: PMC7696730.
  • Cortese M, Goellner S, Acosta EG, et al. Ultrastructural characterization of Zika Virus replication factories. Cell Rep. 2017;18(9):2113–2123. doi: 10.1016/j.celrep.2017.02.014 PubMed PMID: 28249158; PubMed Central PMCID: PMC5340982.
  • Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK, Walther P, et al. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe. 2009;5(4):365–375. doi: 10.1016/j.chom.2009.03.007 PubMed PMID: 19380115; PubMed Central PMCID: PMC7103389.
  • Spitale RC, Crisalli P, Flynn RA, et al. RNA SHAPE analysis in living cells. Nat Chem Biol. 2013;9(1):18–20. doi: 10.1038/nchembio.1131 Epub 2012 Nov 28. PubMed PMID: 23178934; PubMed Central PMCID: PMC3706714.
  • Weeks KM. Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol. 2010;20(3):295–304. doi: 10.1016/j.sbi.2010.04.001 Epub 2010 Jun 08. PubMed PMID: 20447823; PubMed Central PMCID: PMC2916962.
  • Wells SE, Hughes JM, Igel AH, Ares M Jr. Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol. 2000;318:479–493. doi: 10.1016/s0076-6879(00)18071-1 PubMed PMID: 10890007.
  • Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods. 2014;11(9):959–965. doi: 10.1038/nmeth.3029 Epub 20140713. PubMed PMID: 25028896; PubMed Central PMCID: PMC4259394.
  • Zubradt M, Gupta P, Persad S, et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods. 2017;14(1):75–82. doi: 10.1038/nmeth.4057 Epub 20161107. PubMed PMID: 27819661; PubMed Central PMCID: PMC5508988.
  • Lu Z, Zhang QC, Lee B, et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell. 2016;165(5):1267–1279. doi: 10.1016/j.cell.2016.04.028 Epub 20160512. PubMed PMID: 27180905; PubMed Central PMCID: PMC5029792.
  • Ziv O, Gabryelska MM, Lun ATL, et al. COMRADES determines in vivo RNA structures and interactions. Nat Methods. 2018;15(10):785–788. doi: 10.1038/s41592-018-0121-0 Epub 20180910. PubMed PMID: 30202058; PubMed Central PMCID: PMC6168409.
  • Morandi E, Manfredonia I, Simon LM, et al. Genome-scale deconvolution of RNA structure ensembles. Nat Methods. 2021;18(3):249–252. doi: 10.1038/s41592-021-01075-w Epub 20210222. PubMed PMID: 33619392.
  • Lee E, Bujalowski PJ, Teramoto T, et al. Structures of flavivirus RNA promoters suggest two binding modes with NS5 polymerase. Nat Commun. 2021;12(1):2530. doi: 10.1038/s41467-021-22846-1 Epub 20210505. PubMed PMID: 33953197; PubMed Central PMCID: PMC8100141.
  • Osawa T, Aoki M, Ehara H, Sekine SI. Structures of dengue virus RNA replicase complexes. Mol Cell. 2023;83(15):2781–91 e4. doi: 10.1016/j.molcel.2023.06.023 Epub 20230720. PubMed PMID: 37478848.
  • Spitale RC, Incarnato D. Probing the dynamic RNA structurome and its functions. Nat Rev Genet. 2023;24(3):178–196. doi: 10.1038/s41576-022-00546-w Epub 20221108. PubMed PMID: 36348050; PubMed Central PMCID: PMC9644009.
  • Mazeaud C, Freppel W, Chatel-Chaix L. The multiples fates of the flavivirus RNA genome during pathogenesis. Front Genet. 2018;9:595. doi: 10.3389/fgene.2018.00595 Epub 20181204. PubMed PMID: 30564270; PubMed Central PMCID: PMC6288177.
  • Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV. A 5’ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006;20(16):2238–2249. doi: 10.1101/gad.1444206 Epub 2006 Aug 03. PubMed PMID: 16882970; PubMed Central PMCID: PMC1553207.
  • Liu ZY, Li XF, Jiang T, Deng YQ, Ye Q, Zhao H, et al. Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. Elife. 2016;5:e17636. doi: 10.7554/eLife.17636 Epub 2016 Oct 04. PubMed PMID: 27692070; PubMed Central PMCID: PMC5101012.
  • Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV. Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol. 2005;79(11):6631–6643. doi: 10.1128/JVI.79.11.6631-6643.2005 Epub 2005 Jun 14. PubMed PMID: 15890901; PubMed Central PMCID: PMC1112138.
  • Clyde K, Barrera J, Harris E. The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology. 2008;379(2):314–323. doi: 10.1016/j.virol.2008.06.034 Epub 20080803. PubMed PMID: 18676000; PubMed Central PMCID: PMC2628549.
  • Clyde K, Harris E. RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol. 2006;80(5):2170–2182. doi: 10.1128/JVI.80.5.2170-2182.2006 Epub 2006 Feb 14. PubMed PMID: 16474125; PubMed Central PMCID: PMC1395379.
  • Friebe P, Harris E. Interplay of RNA elements in the dengue virus 5‘and 3’ ends required for viral RNA replication. J Virol. 2010;84(12):6103–6118. doi: 10.1128/JVI.02042-09 Epub 20100331. PubMed PMID: 20357095; PubMed Central PMCID: PMC2876622.
  • Villordo SM, Carballeda JM, Filomatori CV, et al. RNA structure duplications and flavivirus host adaptation. Trends Microbiol. 2016;24(4):270–283. doi: 10.1016/j.tim.2016.01.002 Epub 2016 Feb 07. PubMed PMID: 26850219; PubMed Central PMCID: PMC4808370.
  • Filomatori CV, Carballeda JM, Villordo SM, et al. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLOS Pathog. 2017;13(3):e1006265. doi: 10.1371/journal.ppat.1006265 Epub 2017 Mar 07. PubMed PMID: 28264033; PubMed Central PMCID: PMC5354447.
  • Villordo SM, Alvarez DE, Gamarnik AV. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA. 2010;16(12):2325–2335. doi: 10.1261/rna.2120410 Epub 2010 Oct 29. PubMed PMID: 20980673; PubMed Central PMCID: PMC2995394.
  • Filomatori CV, Iglesias NG, Villordo SM, et al. RNA sequences and structures required for the recruitment and activity of the dengue virus polymerase. J Biol Chem. 2011;286(9):6929–6939. doi: 10.1074/jbc.M110.162289 Epub 2010 Dec 25. PubMed PMID: 21183683; PubMed Central PMCID: PMC3044948.
  • Xie X, Zou J, Zhang X, Zhou Y, Routh AL, Kang C, et al. Dengue NS2A protein orchestrates virus assembly. Cell Host Microbe. 2019;26(5):606–22 e8. doi: 10.1016/j.chom.2019.09.015 Epub 20191017. PubMed PMID: 31631053.
  • Zhang X, Xie X, Xia H, Zou J, Huang L, Popov VL, et al. Zika Virus NS2A-Mediated Virion assembly. MBio. 2019;10(5):10–128. doi: 10.1128/mBio.02375-19 Epub 20191029. PubMed PMID: 31662457; PubMed Central PMCID: PMC6819661.
  • Boerneke MA, Gokhale NS, Horner SM, et al. Structure-first identification of RNA elements that regulate dengue virus genome architecture and replication. Proc Natl Acad Sci U S A. 2023;120(15):e2217053120. doi: 10.1073/pnas.2217053120 Epub 20230403. PubMed PMID: 37011200; PubMed Central PMCID: PMC10104495.
  • Boon PLS, Martins AS, Lim XN, Enguita FJ, Santos NC, Bond PJ, et al. Dengue virus capsid protein facilitates genome compaction and packaging. Int J Mol Sci. 2023;24(9):8158. doi: 10.3390/ijms24098158 Epub 20230502. PubMed PMID: 37175867; PubMed Central PMCID: PMC10179140.
  • Huber RG, Lim XN, Ng WC, et al. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat Commun. 2019;10(1):1408. doi: 10.1038/s41467-019-09391-8 Epub 20190329. PubMed PMID: 30926818; PubMed Central PMCID: PMC6441010.
  • Li P, Wei Y, Mei M, Tang L, Sun L, Huang W, et al. Integrative analysis of Zika Virus Genome RNA structure reveals critical determinants of viral infectivity. Cell Host Microbe. 2018;24(6):875–86 e5. doi: 10.1016/j.chom.2018.10.011 Epub 20181121. PubMed PMID: 30472207.
  • Fajardo T, Sanford TJ, Mears HV, et al. The flavivirus polymerase NS5 regulates translation of viral genomic RNA. Nucleic Acids Res. 2020;48(9):5081–5093. doi: 10.1093/nar/gkaa242 PubMed PMID: 32313955; PubMed Central PMCID: PMC7229856.
  • Sanford TJ, Mears HV, Fajardo T, et al. Circularization of flavivirus genomic RNA inhibits de novo translation initiation. Nucleic Acids Res. 2019;47(18):9789–9802. doi: 10.1093/nar/gkz686 PubMed PMID: 31392996; PubMed Central PMCID: PMC6765113.
  • Mishra B, Balaji A, Beesetti H, Swaminathan S, Aduri R. The RNA secondary structural variation in the cyclization elements of the dengue genome and the possible implications in pathogenicity. Virusdisease. 2020;31(3):299–307. doi: 10.1007/s13337-020-00615-w Epub 20200730. PubMed PMID: 32904896; PubMed Central PMCID: PMC7458965.
  • Samsa MM, Mondotte JA, Caramelo JJ, et al. Uncoupling cis-Acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. J Virol. 2012;86(2):1046–1058. doi: 10.1128/JVI.05431-11 Epub 20111109. PubMed PMID: 22072762; PubMed Central PMCID: PMC3255831.
  • Patkar CG, Jones CT, Chang YH, et al. Functional requirements of the yellow fever virus capsid protein. J Virol. 2007;81(12):6471–6481. doi: 10.1128/JVI.02120-06 PubMed PMID: 17526891; PubMed Central PMCID: PMC1900127.
  • Berzal-Herranz A, Berzal-Herranz B, Ramos-Lorente SE, Romero-Lopez C. The genomic 3’ UTR of flaviviruses is a translation initiation enhancer. Int J Mol Sci. 2022;23(15):8604. doi: 10.3390/ijms23158604 Epub 20220803. PubMed PMID: 35955738; PubMed Central PMCID: PMC9369090.
  • Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol. 2006;80(6):2976–2986. doi: 10.1128/JVI.80.6.2976-2986.2006 PubMed PMID: 16501107; PubMed Central PMCID: PMC1395423.
  • Wang T, Merits A, Wu Y, et al. cis-acting sequences and secondary structures in untranslated regions of duck tembusu virus RNA are important for cap-independent translation and viral proliferation. J Virol. 2020;94(16):10–128. doi: 10.1128/JVI.00906-20 Epub 20200730. PubMed PMID: 32522848; PubMed Central PMCID: PMC7394898.
  • Fernandez-Garcia L, Angulo J, Ramos H, Barrera A, Pino K, Vera-Otarola J, et al. The internal ribosome entry site of the Dengue virus mRNA is active when cap-dependent translation initiation is inhibited. J Virol. 2021;95(5):10–128. doi: 10.1128/JVI.01998-20 Epub 20201209. PubMed PMID: 33298544; PubMed Central PMCID: PMC8092825.
  • Song Y, Mugavero J, Stauft CB, Wimmer E. Dengue and Zika Virus 5’ untranslated regions harbor internal ribosomal entry site functions. MBio. 2019;10(2):10–128. doi: 10.1128/mBio.00459-19 Epub 20190409. PubMed PMID: 30967466; PubMed Central PMCID: PMC6456755.
  • Roth H, Magg V, Uch F, Mutz P, Klein P, Haneke K, et al. Flavivirus infection uncouples translation suppression from cellular stress responses. MBio. 2017;8(1):10–128. doi: 10.1128/mBio.02150-16 Epub 20170110. PubMed PMID: 28074025; PubMed Central PMCID: PMC5225315.
  • Sagan SM, Weber SC. Let’s phase it: viruses are master architects of biomolecular condensates. Trends Biochem Sci. 2023;48(3):229–243. doi: 10.1016/j.tibs.2022.09.008 Epub 20221019. PubMed PMID: 36272892.
  • Barton DJ, Morasco BJ, Flanegan JB. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J Virol. 1999;73(12):10104–10112. doi: 10.1128/JVI.73.12.10104-10112.1999 PubMed PMID: 10559325; PubMed Central PMCID: PMC113062.
  • De Falco L, Silva NM, Santos NC, Huber RG, Martins IC. The Pseudo-circular genomes of flaviviruses: structures, mechanisms, and functions of circularization. Cells. 2021;10(3):642. doi: 10.3390/cells10030642 Epub 20210313. PubMed PMID: 33805761; PubMed Central PMCID: PMC7999817.
  • de Borba L, Villordo SM, Marsico FL, Carballeda JM, Filomatori CV, Gebhard LG, et al. RNA structure duplication in the dengue virus 3′ UTR: redundancy or host specificity? MBio. 2019;10(1). doi: 10.1128/mBio.02506-18 Epub 2019 Jan 10. PubMed PMID: 30622191; PubMed Central PMCID: PMC6325252.
  • Meyer A, Freier M, Schmidt T, Rostowski K, Zwoch J, Lilie H, et al. An RNA thermometer activity of the West Nile Virus Genomic 3′-terminal stem-loop element modulates viral replication efficiency during host switching. Viruses. 2020;12(1):104. doi: 10.3390/v12010104 Epub 20200115. PubMed PMID: 31952291; PubMed Central PMCID: PMC7019923.
  • Wang S, Chan KWK, Tan MJA, Flory C, Luo D, Lescar J, et al. A conserved arginine in NS5 binds genomic 3’ stem-loop RNA for primer-independent initiation of flavivirus RNA replication. RNA. 2022;28(2):177–193. doi: 10.1261/rna.078949.121 Epub 20211110. PubMed PMID: 34759006; PubMed Central PMCID: PMC8906541.
  • Hodge K, Tunghirun C, Kamkaew M, et al. Identification of a conserved RNA-dependent RNA polymerase (RdRp)-RNA interface required for flaviviral replication. J Biol Chem. 2016;291(33):17437–17449. doi: 10.1074/jbc.M116.724013 Epub 20160622. PubMed PMID: 27334920; PubMed Central PMCID: PMC5016140.
  • Livingston NM, Kwon J, Valera O, Saba JA, Sinha NK, Reddy P, et al. Bursting translation on single mRnas in live cells. Mol Cell. 2023;83(13):2276–89.e11. doi: 10.1016/j.molcel.2023.05.019 Epub 20230616. PubMed PMID: 37329884; PubMed Central PMCID: PMC10330622.
  • Cerikan B, Goellner S, Neufeldt CJ, Haselmann U, Mulder K, Chatel-Chaix L, et al. A non-replicative role of the 3’ terminal sequence of the dengue virus genome in membranous replication organelle formation. Cell Rep. 2020;32(1):107859. doi: 10.1016/j.celrep.2020.107859 PubMed PMID: 32640225; PubMed Central PMCID: PMC7351112.
  • Mazeaud C, Pfister S, Owen JE, et al. Zika virus remodels and hijacks IGF2BP2 ribonucleoprotein complex to promote viral replication organelle biogenesis. bioRxiv. 2023:2023–12. doi: 10.1101/2023.12.08.570783
  • Burke JM, Ratnayake OC, Watkins JM, et al. G3BP1-dependent condensation of translationally inactive viral RNAs antagonizes infection. Sci Adv. 2024;10(5):eadk8152. doi: 10.1126/sciadv.adk8152 Epub 20240131. PubMed PMID: 38295168; PubMed Central PMCID: PMC10830107.
  • Barnard TR, Wang AB, Sagan SM. A highly sensitive strand-specific multiplex RT-qPCR assay for quantitation of Zika virus replication. J Virol Methods. 2022;307:114556. doi: 10.1016/j.jviromet.2022.114556 Epub 20220530. PubMed PMID: 35654259.
  • Selisko B, Potisopon S, Agred R, et al. Molecular basis for nucleotide conservation at the ends of the dengue virus genome. PLOS Pathog. 2012;8(9):e1002912. doi: 10.1371/journal.ppat.1002912 Epub 20120913. PubMed PMID: 23028313; PubMed Central PMCID: PMC3441707.
  • Upstone L, Colley R, Harris M, Goonawardane N. Functional characterization of 5’ untranslated region (UTR) secondary RNA structures in the replication of tick-borne encephalitis virus in mammalian cells. PLOS Negl Trop Dis. 2023;17(1):e0011098. doi: 10.1371/journal.pntd.0011098 Epub 20230123. PubMed PMID: 36689554; PubMed Central PMCID: PMC9894543.
  • Lodeiro MF, Filomatori CV, Gamarnik AV. Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol. 2009;83(2):993–1008. doi: 10.1128/JVI.01647-08 Epub 20081112. PubMed PMID: 19004935; PubMed Central PMCID: PMC2612346.
  • Sun YT, Varani G. Structure of the dengue virus RNA promoter. RNA. 2022;28(9):1210–1223. doi: 10.1261/rna.079197.122 Epub 20220624. PubMed PMID: 35750488; PubMed Central PMCID: PMC9380747.
  • Bujalowski PJ, Bujalowski W, Choi KH. Identification of the viral RNA promoter stem loop a (SLA)-binding site on Zika virus polymerase NS5. Sci Rep. 2020;10(1):13306. doi: 10.1038/s41598-020-70094-y Epub 20200806. PubMed PMID: 32764551; PubMed Central PMCID: PMC7413259.
  • Dong H, Zhang B, Shi PY. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. Virology. 2008;381(1):123–135. doi: 10.1016/j.virol.2008.07.040 Epub 20080916. PubMed PMID: 18799181.
  • Bujalowski PJ, Bujalowski W, Choi KH, et al. Interactions between the dengue virus polymerase NS5 and Stem-Loop a. J Virol. 2017;91(11):10–128. doi: 10.1128/JVI.00047-17 Epub 20170512. PubMed PMID: 28356528; PubMed Central PMCID: PMC5432874.
  • Yu L, Nomaguchi M, Padmanabhan R, Markoff L. Specific requirements for elements of the 5‘and 3’ terminal regions in flavivirus RNA synthesis and viral replication. Virology. 2008;374(1):170–185. doi: 10.1016/j.virol.2007.12.035 Epub 20080129. PubMed PMID: 18234265; PubMed Central PMCID: PMC3368002.
  • Lott WB, Doran MR. Do RNA viruses require genome cyclisation for replication? Trends Biochem Sci. 2013;38(7):350–355. doi: 10.1016/j.tibs.2013.04.005 Epub 20130612. PubMed PMID: 23768999.
  • Cong Y, Ulasli M, Schepers H, et al. Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J Virol. 2020;94(4). doi: 10.1128/JVI.01925-19 Epub 20200131. PubMed PMID: 31776274; PubMed Central PMCID: PMC6997762.
  • Gottipati K, McNeme SC, Tipo J, White MA, Choi KH. Structural basis for cloverleaf RNA-initiated viral genome replication. Nucleic Acids Res. 2023;51(16):8850–8863. doi: 10.1093/nar/gkad618 PubMed PMID: 37486760; PubMed Central PMCID: PMC10484678.
  • Lo CY, Tsai TL, Lin CN, Lin CH, Wu HY. Interaction of coronavirus nucleocapsid protein with the 5’- and 3’-ends of the coronavirus genome is involved in genome circularization and negative-strand RNA synthesis. FEBS J. 2019;286(16):3222–3239. doi: 10.1111/febs.14863 Epub 20190508. PubMed PMID: 31034708; PubMed Central PMCID: PMC7164124.
  • Pflug A, Guilligay D, Reich S, et al. Structure of influenza a polymerase bound to the viral RNA promoter. Nature. 2014;516(7531):355–360. doi: 10.1038/nature14008 Epub 20141119. PubMed PMID: 25409142.
  • Chen CJ, Kuo MD, Chien LJ, et al. RNA-protein interactions: involvement of NS3, NS5, and 3’ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol. 1997;71(5):3466–3473. doi: 10.1128/JVI.71.5.3466-3473.1997 PubMed PMID: 9094618; PubMed Central PMCID: PMC191493.
  • Tilgner M, Deas TS, Shi PY. The flavivirus-conserved penta-nucleotide in the 3’ stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation. Virology. 2005;331(2):375–386. doi: 10.1016/j.virol.2004.07.022 PubMed PMID: 15629780.
  • Villordo SM, Gamarnik AV. Genome cyclization as strategy for flavivirus RNA replication. Virus Res. 2009;139(2):230–239. doi: 10.1016/j.virusres.2008.07.016 Epub 20080909. PubMed PMID: 18703097; PubMed Central PMCID: PMC5440119.
  • Ferrero DS, Ruiz-Arroyo VM, Soler N, Uson I, Guarne A, Verdaguer N. Supramolecular arrangement of the full-length Zika virus NS5. PLOS Pathogens. 2019;15(4):ARTN e1007656. doi: 10.1371/journal.ppat.1007656 PubMed PMID: WOS:000466742700014.
  • Klema VJ, Ye MY, Hindupur A, Teramoto T, Gottipati K, Padmanabhan R, Rey FA, et al. Denguevirus Nonstructural Protein 5 (NS5) assembles into a dimer with a unique methyltransferase and polymerase interface. PLOS Pathogens. 2016;12(2):ARTN e1005451. doi: 10.1371/journal.ppat.1005451 PubMed PMID: WOS:000378152900044.
  • Yang J, Jing X, Yi W, et al. Crystal structure of a tick-borne flavivirus RNA-dependent RNA polymerase suggests a host adaptation hotspot in RNA viruses. Nucleic Acids Res. 2021;49(3):1567–1580. doi: 10.1093/nar/gkaa1250 PubMed PMID: 33406260; PubMed Central PMCID: PMC7897508.
  • Xu S, Ci Y, Wang L, et al. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res. 2019;47(16):8693–8707. doi: 10.1093/nar/gkz650 PubMed PMID: 31361901; PubMed Central PMCID: PMC6895266.
  • Herod MR, Ward JC, Tuplin A, et al. Positive strand RNA viruses differ in the constraints they place on the folding of their negative strand. RNA. 2022;28(10):1359–1376. doi: 10.1261/rna.079125.122 Epub 20220802. PubMed PMID: 35918125; PubMed Central PMCID: PMC9479745.
  • Homan PJ, Favorov OV, Lavender CA, et al. Single-molecule correlated chemical probing of RNA. Proc Natl Acad Sci USA. 2014;111(38):13858–13863. doi: 10.1073/pnas.1407306111 Epub 20140909. PubMed PMID: 25205807; PubMed Central PMCID: PMC4183288.
  • Choi KH. The role of the stem-loop a RNA promoter in flavivirus replication. Viruses. 2021;13(6):1107. doi: 10.3390/v13061107 Epub 20210609. PubMed PMID: 34207869; PubMed Central PMCID: PMC8226660.
  • Friebe P, Bartenschlager R. Role of RNA structures in genome terminal sequences of the hepatitis C virus for replication and assembly. J Virol. 2009;83(22):11989–11995. doi: 10.1128/JVI.01508-09 Epub 20090909. PubMed PMID: 19740989; PubMed Central PMCID: PMC2772684.
  • Schult P, Nattermann M, Lauber C, et al. Evidence for internal initiation of RNA synthesis by the Hepatitis C virus RNA-Dependent RNA Polymerase NS5B in Cellulo. J Virol. 2019;93(19):10–128. doi: 10.1128/JVI.00525-19 Epub 20190912. PubMed PMID: 31315989; PubMed Central PMCID: PMC6744235.
  • Chahal J, Gebert LFR, Camargo C, MacRae IJ, Sagan SM. miR-122-based therapies select for three distinct resistance mechanisms based on alterations in RNA structure. Proc Natl Acad Sci, USA. 2021;118(33). doi: 10.1073/pnas.2103671118 PubMed PMID: 34385308; PubMed Central PMCID: PMC8379925.
  • Kim YG, Yoo JS, Kim JH, Kim CM, Oh JW. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC Mol Biol. 2007;8(1):59. doi: 10.1186/1471-2199-8-59 Epub 2007 Jul 12. PubMed PMID: 17623110; PubMed Central PMCID: PMC1934914.
  • Calmels C, Metifiot M, Andreola ML. Template requirements of Zika RNA polymerase during in vitro RNA synthesis from the 3’-end of virus minus-strand RNA. Biochimie. 2022;195:71–76. doi: 10.1016/j.biochi.2021.11.003 Epub 20211113. PubMed PMID: 34780840.
  • Dong H, Ray D, Ren S, et al. Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol. 2007;81(9):4412–4421. doi: 10.1128/JVI.02455-06 Epub 20070214. PubMed PMID: 17301144; PubMed Central PMCID: PMC1900168.
  • Zhao Y, Soh TS, Lim SP, Chung KY, Swaminathan K, Vasudevan SG, et al. Molecular basis for specific viral RNA recognition and 2’-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proc Natl Acad Sci U S A. 2015;112(48):14834–14839. doi: 10.1073/pnas.1514978112 Epub 20151117. PubMed PMID: 26578813; PubMed Central PMCID: PMC4672796.
  • Nicholls CMR, Sevvana M, Kuhn RJ. Structure-guided paradigm shifts in flavivirus assembly and maturation mechanisms. Adv Virus Res. 2020;108:33–83. doi: 10.1016/bs.aivir.2020.08.003 Epub 20200923. PubMed PMID: 33837721; PubMed Central PMCID: PMC7510438.
  • Barnard TR, Abram QH, Lin QF, et al. Molecular determinants of flavivirus virion assembly. Trends Biochem Sci. 2021;46(5):378–390. doi: 10.1016/j.tibs.2020.12.007 Epub 20210107. PubMed PMID: 33423940.
  • Pong WL, Huang ZS, Teoh PG, et al. RNA binding property and RNA chaperone activity of dengue virus core protein and other viral RNA-interacting proteins. FEBS Lett. 2011;585(16):2575–2581. doi: 10.1016/j.febslet.2011.06.038 Epub 20110719. PubMed PMID: 21771593; PubMed Central PMCID: PMC7164067.
  • Xie X, Zou J, Puttikhunt C, et al. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly. J Virol. 2015;89(2):1298–1313. doi: 10.1128/JVI.02882-14 Epub 20141112. PubMed PMID: 25392211; PubMed Central PMCID: PMC4300643.
  • Byk LA, Gamarnik AV. Properties and functions of the dengue virus capsid protein. Annu Rev Virol. 2016;3(1):263–281. doi: 10.1146/annurev-virology-110615-042334 Epub 20160803. PubMed PMID: 27501261; PubMed Central PMCID: PMC5417333.
  • Tan TY, Fibriansah G, Kostyuchenko VA, Ng TS, Lim XX, Zhang S, et al. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat Commun. 2020;11(1):895. doi: 10.1038/s41467-020-14647-9 Epub 20200214. PubMed PMID: 32060358; PubMed Central PMCID: PMC7021721.
  • Reid CR, Hobman TC. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites. Virology. 2017;500:169–177. doi: 10.1016/j.virol.2016.10.025 Epub 20161104. PubMed PMID: 27821284.
  • Xu Z, Hobman TC. The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles. Virology. 2012;433(1):226–235. doi: 10.1016/j.virol.2012.08.011 Epub 20120825. PubMed PMID: 22925334; PubMed Central PMCID: PMC7119007.
  • Overwijn D, Hondele M. DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends Biochem Sci. 2023;48(3):244–258. doi: 10.1016/j.tibs.2022.10.001 Epub 20221104. PubMed PMID: 36344372.
  • Krishnan MN, Ng A, Sukumaran B, et al. RNA interference screen for human genes associated with West Nile virus infection. Nature. 2008;455(7210):242–245. doi: 10.1038/nature07207 PubMed PMID: 18690214; PubMed Central PMCID: PMC3136529.
  • Michalski D, Ontiveros JG, Russo J, et al. Zika virus noncoding sfRnas sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J Biol Chem. 2019;294(44):16282–16296. doi: 10.1074/jbc.RA119.009129 Epub 20190913. PubMed PMID: 31519749; PubMed Central PMCID: PMC6827284.
  • Paranjape SM, Harris E. Y box-binding protein-1 binds to the dengue virus 3’-untranslated region and mediates antiviral effects. J Biol Chem. 2007;282(42):30497–30508. doi: 10.1074/jbc.M705755200 Epub 20070828. PubMed PMID: 17726010.
  • Bonenfant G, Williams N, Netzband R, et al. Zika virus subverts stress granules to promote and restrict viral gene expression. J Virol. 2019;93(12):10–128. doi: 10.1128/JVI.00520-19 Epub 20190529. PubMed PMID: 30944179; PubMed Central PMCID: PMC6613768.
  • Diosa-Toro M, Kennedy DR, Chuo V, Popov VL, Pompon J, Garcia-Blanco MA, Coyne CB. Y-Box binding protein 1 interacts with dengue virus nucleocapsid and mediates viral assembly. MBio. 2022;13(1):e0019622. doi: 10.1128/mbio.00196-22 Epub 20220222. PubMed PMID: 35189699; PubMed Central PMCID: PMC8903895.
  • Sanz MA, Almela EG, Garcia-Moreno M, et al. A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. RNA. 2019;25(4):431–452. doi: 10.1261/rna.068858.118 PEpub 20190118. ubMed PMID: 30659060; PubMed Central PMCID: PMC6426287.
  • Toribio R, Diaz-Lopez I, Boskovic J, et al. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation. Nucleic Acids Res. 2016;44(9):4368–4380. doi: 10.1093/nar/gkw172 Epub 20160316. PubMed PMID: 26984530; PubMed Central PMCID: PMC4872096.
  • Kozak M. Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A. 1990;87(21):8301–8305. doi: 10.1073/pnas.87.21.8301 PubMed PMID: 2236042; PubMed Central PMCID: PMC54943.
  • Vogt DA, Andino R, Diamond MS. An RNA element at the 5′-End of the Poliovirus genome functions as a general promoter for RNA synthesis. PLOS Pathog. 2010;6(6):e1000936. doi: 10.1371/journal.ppat.1000936 Epub 20100603. PubMed PMID: 20532207; PubMed Central PMCID: PMC2880563.
  • Tomescu AI, Robb NC, Hengrung N, et al. Single-molecule FRET reveals a corkscrew RNA structure for the polymerase-bound influenza virus promoter. Proc Natl Acad Sci USA. 2014;111(32):E3335–42. doi: 10.1073/pnas.1406056111 Epub 20140728. PubMed PMID: 25071209; PubMed Central PMCID: PMC4136606.
  • Chen SC, Olsthoorn RC. Group-specific structural features of the 5’-proximal sequences of coronavirus genomic RNAs. Virology. 2010;401(1):29–41. doi: 10.1016/j.virol.2010.02.007 Epub 20100304. PubMed PMID: 20202661; PubMed Central PMCID: PMC7111916.
  • Hurst KR, Koetzner CA, Masters PS. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol. 2009;83(14):7221–7234. doi: 10.1128/JVI.00440-09 Epub 20090506. PubMed PMID: 19420077; PubMed Central PMCID: PMC2704785.
  • Terasaki K, Narayanan K, Makino S, et al. Identification of a 1.4-kb-Long sequence located in the nsp12 and nsp13 coding regions of SARS-CoV-2 genomic RNA that mediates efficient viral RNA packaging. J Virol. 2023;97(7):e0065923. doi: 10.1128/jvi.00659-23 Epub 20230627. PubMed PMID: 37367225; PubMed Central PMCID: PMC10373556.
  • Miyamoto S, Muramoto Y, Shindo K, et al. Contribution of RNA-RNA interactions mediated by the genome packaging signals for the selective genome packaging of influenza a virus. J Virol. 2022;96(6):e0164121. doi: 10.1128/JVI.01641-21 Epub 20220119. PubMed PMID: 35044211; PubMed Central PMCID: PMC8941900.
  • Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into structural and mechanistic features of viral IRES elements. Front Microbiol. 2017;8:2629. doi: 10.3389/fmicb.2017.02629 Epub 20180104. PubMed PMID: 29354113; PubMed Central PMCID: PMC5759354.
  • Dilweg IW, Gultyaev AP, Olsthoorn RC. Structural features of an Xrn1-resistant plant virus RNA. RNA Biol. 2019;16(6):838–845. doi: 10.1080/15476286.2019.1592070 Epub 20190405. PubMed PMID: 30951405; PubMed Central PMCID: PMC6546385.
  • Villordo SM, Filomatori CV, Sanchez-Vargas I, et al. Dengue virus RNA structure specialization facilitates host adaptation. PLOS Pathog. 2015;11(1):e1004604. doi: 10.1371/journal.ppat.1004604 Epub 2015 Jan 31. PubMed PMID: 25635835; PubMed Central PMCID: PMC4311971.
  • Long S. SARS-CoV-2 Subgenomic RNAs: Characterization, utility, and perspectives. Viruses. 2021;13(10):1923. doi: 10.3390/v13101923 Epub 20210924. PubMed PMID: 34696353; PubMed Central PMCID: PMC8539008.
  • Boerneke MA, Ehrhardt JE, Weeks KM. Physical and functional analysis of viral RNA genomes by SHAPE. Annu Rev Virol. 2019;6(1):93–117. doi: 10.1146/annurev-virology-092917-043315 Epub 20190723. PubMed PMID: 31337286; PubMed Central PMCID: PMC6768749.
  • Cao C, Cai Z, Xiao X, et al. The architecture of the SARS-CoV-2 RNA genome inside virion. Nat Commun. 2021;12(1):3917. doi: 10.1038/s41467-021-22785-x Epub 20210624. PubMed PMID: 34168138; PubMed Central PMCID: PMC8225788.