484
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Rapid and scalable detection of synthetic mRNA byproducts using polynucleotide phosphorylase and polythymidine oligonucleotides

ORCID Icon, , &
Pages 1-8 | Accepted 28 May 2024, Published online: 05 Jun 2024

References

  • AbouHaidar MG, Ivanov IG. Non-enzymatic RNA hydrolysis promoted by the combined catalytic activity of buffers and magnesium ions. Zeitschrift für Naturforschung C. 1999;54(7–8):542–548. doi: 10.1515/znc-1999-7-813
  • Skeidsvoll J, Ueland PM. Analysis of RNA by capillary electrophoresis. Electrophor. 1996;17(9):1512–1517. doi: 10.1002/elps.1150170917
  • Raffaele J, Loughney JW and Rustandi RR. Development of a microchip capillary electrophoresis method for determination of the purity and integrity of mRNA in lipid nanoparticle vaccines. Electrophor. 2022;43(9–10):1101–1106. doi: 10.1002/elps.202100272
  • Sobczak K. RNA structure analysis assisted by capillary electrophoresis. Nucleic Acids Res. 2002;30(22):124e–124. doi: 10.1093/nar/gnf123
  • Bakke M, Suzuki S. Development of a novel hygiene monitoring system based on the detection of total adenylate (ATP+ADP+AMP). J Food Prot. 2018;81(5):729–737. doi: 10.4315/0362-028X.JFP-17-432
  • Cameron TA, Matz LM, De Lay NR, et al. Polynucleotide phosphorylase: not merely an RNase but a pivotal post-transcriptional regulator. PLOS Genet. 2018;14(10):e1007654. doi: 10.1371/journal.pgen.1007654
  • Cameron TA, Matz LM, Sinha D, et al. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments. Nucleic Acids Res. 2019;47:8821–8837. doi: 10.1093/nar/gkz616
  • Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29 (Suppl 1):S49–52.
  • Francis C, Frida J, Thanh-Huong P, et al. Urea supplementation improves mRNA in vitro transcription by decreasing both shorter and longer RNA byproducts. RNA Biol. 2024;21(1):1–6. doi: 10.1080/15476286.2024.2321764
  • Ziegenhals T, Frieling R, Wolf P, et al. Formation of dsRNA by-products during in vitro transcription can be reduced by using low steady-state levels of UTP. Front Mol Biosci. 2023;10:1291045. doi: 10.3389/fmolb.2023.1291045
  • Weissman D, Pardi N, Muramatsu H, et al. HPLC purification of in vitro transcribed long RNA. Methods Mol Biol. 2013;969:43–54.
  • Brisco MJ, Morley AA. Quantification of RNA integrity and its use for measurement of transcript number. Nucleic Acids Res. 2012;40(18):e144. doi: 10.1093/nar/gks588
  • Packer M, Gyawali D, Yerabolu R, et al. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems. Nat Commun. 2021;12(1):6777. doi: 10.1038/s41467-021-26926-0
  • Myatt DP, Wharram L, Graham C, et al. Biophysical characterization of the structure of a SARS-CoV-2 self-amplifying RNA (saRNA) vaccine. Biol Methods Protoc. 2023;8(1):bpad001. doi: 10.1093/biomethods/bpad001
  • Warzak DA, Pike WA, Luttgeharm KD. Capillary electrophoresis methods for determining the IVT mRNA critical quality attributes of size and purity. SLAS Technol. 2023;28(5):369–374. doi: 10.1016/j.slast.2023.06.005
  • Gunter HM, Idrisoglu S, Singh S, et al. mRNA vaccine quality analysis using RNA sequencing. Nat Commun. 2023;14(1):5663. doi: 10.1038/s41467-023-41354-y
  • Camperi J, Lippold S, Ayalew L, et al. Comprehensive impurity profiling of mRNA: evaluating current technologies and advanced analytical techniques. Anal Chem. 2024;96(9):3886–3897. doi: 10.1021/acs.analchem.3c05539
  • Shi Z, Yang W-Z, Lin-Chao S, et al. Crystal structure of Escherichia coli PNPase: central channel residues are involved in processive RNA degradation. RNA. 2008;14(11):2361–2371. doi: 10.1261/rna.1244308
  • First self-amplifying mRNA vaccine approved. Nat Biotechnol. 2024;42(1):4. doi: 10.1038/s41587-023-02101-2
  • Wayment-Steele HK, Kim DS, Choe CA, et al. Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Res. 2021;49(18):10604–10617. doi: 10.1093/nar/gkab764
  • Honda S, Morichika K, Kirino Y. Selective amplification and sequencing of cyclic phosphate–containing RNAs by the cP-RNA-seq method. Nat Protoc. 2016;11(3):476–489. doi: 10.1038/nprot.2016.025
  • Shigematsu M, Kawamura T, Kirino Y. Generation of 2’,3’-cyclic phosphate-containing RNAs as a hidden layer of the transcriptome. Front Genet. 2018;9:562. doi: 10.3389/fgene.2018.00562
  • Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophor. 2012;33(2):366–369. doi: 10.1002/elps.201100335
  • Baiersdörfer M, Boros G, Muramatsu H, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids. 2019;15:26–35. doi: 10.1016/j.omtn.2019.02.018
  • Alekhina OM, Vassilenko KS, Spirin AS. Translation of non-capped mRnas in a eukaryotic cell-free system: acceleration of initiation rate in the course of polysome formation. Nucleic Acids Res. 2007;35(19):6547–6559. doi: 10.1093/nar/gkm725