289
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Translational impacts of enzymes that modify ribosomal RNA around the peptidyl transferase centre

, , , , &
Pages 31-41 | Received 20 Feb 2024, Accepted 11 Jun 2024, Published online: 01 Jul 2024

References

  • Krzyzosiak W, Denman R, Nurse K, et al. In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochem. 1987;26(8):2353–2364. doi: 10.1021/bi00382a042
  • Melnikov S, Ben-Shem A, Garreau de Loubresse N, et al. One core, two shells: bacterial and eukaryotic ribosomes. Nat Struct Mol Biol. 2012;19(6):560–567. doi: 10.1038/nsmb.2313
  • Sergiev PV, Aleksashin NA, Chugunova AA, et al. Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol. 2018;14(3):226–235. doi: 10.1038/nchembio.2569
  • Rodnina MV, Wintermeyer W, Green R, editors. Ribosomes structure, function, and dynamics. Vienna: Springer Science & Business Media; 2011.
  • Liljeruhm J, Leppik M, Bao L, et al. Plasticity and conditional essentiality of modification enzymes for domain V of Escherichia coli 23S ribosomal RNA. RNA. 2022;28(6):796–807. doi: 10.1261/rna.079096.121
  • Purta E, O’Connor M, Bujnicki JM, et al. YgdE is the 2′‐O‐ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Mol Microbiol. 2009;72(5):1147–1158. doi: 10.1111/j.1365-2958.2009.06709.x
  • Pletnev P, Guseva E, Zanina A, et al. Comprehensive functional analysis of Escherichia coli ribosomal RNA methyltransferases. Front Genet. 2020;11:97. doi: 10.3389/fgene.2020.00097
  • Arai T, Ishiguro K, Kimura S, et al. Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly. Proc Natl Acad Sci USA. 2015;112(34):E4707–E4716. doi: 10.1073/pnas.1506749112
  • Tan J, Jakob U, Bardwell JCA. Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol. 2002;184(10):2692–2698. doi: 10.1128/JB.184.10.2692-2698.2002
  • Hager J, Staker BL, Bugl H, et al. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem. 2002;277(44):41978–41986. doi: 10.1074/jbc.M205423200
  • Ishiguro K, Arai T, Suzuki T. Depletion of S-adenosylmethionine impacts on ribosome biogenesis through hypomodification of a single rRNA methylation. Nucleic Acids Res. 2019;47(8):4226. doi: 10.1093/nar/gkz111
  • Bügl H, Fauman EB, Staker BL, et al. RNA methylation under heat shock control. Mol Cell. 2000;6(2):349–360. doi: 10.1016/S1097-2765(00)00035-6
  • Caldas T, Binet E, Bouloc P, et al. Translational defects of Escherichia coli mutants deficient in the Um2552 23S ribosomal RNA methyltransferase RrmJ/FTSJ. Biochem Biophys Res Commun. 2000;271(3):714–718. doi: 10.1006/bbrc.2000.2702
  • Wang W, Li W, Ge X, et al. Loss of a single methylation in 23S rRNA delays 50S assembly at multiple late stages and impairs translation initiation and elongation. Proc Natl Acad Sci USA. 2020;117(27):15609–15619. doi: 10.1073/pnas.1914323117
  • Liu Q, Fredrick K. Intersubunit bridges of the bacterial ribosome. J Mol Biol. 2016;428(10):2146–2164. doi: 10.1016/j.jmb.2016.02.009
  • Green R, Noller HF. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA. 1996;2(10):1011–1021.
  • Forster AC, Church GM. Towards synthesis of a minimal cell. Mol Syst Biol. 2006;2(1):45. doi: 10.1038/msb4/100090
  • Hammerling MJ, Fritz BR, Yoesep DJ, et al. In vitro ribosome synthesis and evolution through ribosome display. Nat Commun. 2020;11(1):1108. doi: 10.1038/s41467-020-14705-2
  • O’Connor M, Leppik M, Remme J. Pseudouridine-free Escherichia coli ribosomes. 2018. J Bacteriol. 2018;200(4): doi:10.1128/JB.00540-17
  • Nierhaus KH, Lafontaine DL. Ribosome assembly. In: Nierhaus K Wilson D, editors. Protein synthesis and ribosome structure: translating the genome. Hoboken (NJ): Wiley; 2004. p. 85–143.
  • Pavlov MY, Freistroffer DV, MacDougall J, et al. Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. Embo J. 1997;16(13):4134–4141. doi: 10.1093/emboj/16.13.4134
  • Johansson M, Bouakaz E, Lovmar M, et al. The kinetics of ribosomal peptidyl transfer revisited. Mol Cell. 2008;30(5):589–598. doi: 10.1016/j.molcel.2008.04.010
  • Wang J, Kwiatkowski M, Pavlov MY, et al. Peptide formation by N-methyl amino acids in translation is hastened by higher pH and tRNAPro. ACS Chem Biol. 2014;9(6):1303–1311. doi: 10.1021/cb500036a
  • Nierhaus KH. Reconstitution of ribosomes. Ribosomes Protein Synth: Pract Approach. 1990;1990:161–188.
  • Schleif R, Hess W, Finkelstein S, et al. Induction kinetics of the L-arabinose operon of Escherichia coli. J Bacteriol. 1973;115(1):9–14. doi: 10.1128/jb.115.1.9-14.1973
  • Miller JH, editor. Assay of β-galactosidase. In: Experiments in molecular genetics. Cold Spring Harbor Laboratory: Cold Spring Harbor NY; 1972. p. 352–355.
  • Bao L, Menon PNK, Liljeruhm J, et al. Overcoming chromoprotein limitations by engineering a red fluorescent protein. Anal Biochem. 2020;611:113936. doi: 10.1016/j.ab.2020.113936
  • Liljeruhm J, Gullberg E, Forster AC. Synthetic biology: a lab manual. Singapore: World Scientific Press; 2014.
  • Lilleorg S, Reier K, Volõnkin P, et al. Phenotypic effects of paralogous ribosomal proteins bL31A and bL31B in E. coli. Sci Rep. 2020;10(1):11682. doi: 10.1038/s41598-020-68582-2
  • Alatossava T, Jütte H, Kuhn A, et al. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol. 1985;162(1):413–419. doi: 10.1128/jb.162.1.413-419.1985
  • Dai X, Zhu M, Warren M, et al. Slowdown of translational elongation in Escherichia coli under hyperosmotic stress. MBio. 2018;9(1):10–1128. doi: 10.1128/mBio.02375-17
  • Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol. 1998;180(17):4704–4710. doi: 10.1128/JB.180.17.4704-4710.1998
  • Kim DF, Green R. Base-pairing between 23S rRNA and tRNA in the ribosomal a site. Mol Cell. 1999;4(5):859–864. doi: 10.1016/S1097-2765(00)80395-0
  • Martin Schmeing T, Huang KS, Strobel SA, et al. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature. 2005;438(7067):520–524. doi: 10.1038/nature04152
  • Ling C, Ermolenko DN. Structural insights into ribosome translocation. Wiley Interdiscip Rev RNA. 2016;7(5):620–636. doi: 10.1002/wrna.1354
  • Davis JH, Tan YZ, Carragher B, et al. Modular assembly of the bacterial large ribosomal subunit. Cell. 2016;167(6):1610–1622. doi: 10.1016/j.cell.2016.11.020
  • Ero R, Leppik M, Reier K, et al. Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli. Nucleic Acids Res. 2024:gkae222. doi: 10.1093/nar/gkae222
  • Seffouh A, Nikolay R, Ortega J. Critical steps in the assembly process of the bacterial 50S ribosomal subunit. Nucleic Acids Res. 2024;52(8):4111–4123. doi: 10.1093/nar/gkae199
  • Moore PB, Steitz TA. The roles of RNA in the synthesis of protein. CSH Perspect Biol. 2011;3(11):a003780. doi: 10.1101/cshperspect.a003780
  • Nikolay R, Hilal T, Qin B, et al. Structural visualization of the formation and activation of the 50S ribosomal subunit during in vitro reconstitution. Mol Cell. 2018;70(5):881–893. doi: 10.1016/j.molcel.2018.05.003
  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–D307. doi: 10.1093/nar/gkx1030