135
Views
1
CrossRef citations to date
0
Altmetric
Point of View

Temperature-sensing riboceptors

ORCID Icon
Pages 1-6 | Accepted 08 Jul 2024, Published online: 17 Jul 2024

References

  • Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol. 2015;15(6):335–349. doi: 10.1038/nri3843
  • Ben-Haj-Salah H, Tardieu F. Temperature affects expansion rate of maize leaves without change in spatial distribution of cell length (analysis of the coordination between cell division and cell expansion). Plant Physiol. 1995;109(3):861–870. doi: 10.1104/pp.109.3.861
  • Delomas TA, Dabrowski K. Larval rearing of zebrafish at suboptimal temperatures. J Therm Biol. 2018;74:170–173. doi: 10.1016/j.jtherbio.2018.03.017
  • Howard DH. Effect of temperature on the intracellular growth of Histoplasma capsulatum. J Bacteriol. 1967;93(1):438–444. doi: 10.1128/jb.93.1.438-444.1967
  • Watanabe I, Okada S. Effects of temperature on growth rate of cultured mammalian cells (L5178Y). J Cell Biol. 1967;32(2):309–323. doi: 10.1083/jcb.32.2.309
  • Barnett SA, Neil AC. Growth and reproduction of mice cross-fostered between parents reared at different temperatures. J Physiol. 1971;215(3):665–678. doi: 10.1113/jphysiol.1971.sp009490
  • Inada N. A Guide to plant intracellular temperature imaging using fluorescent thermometers. Plant Cell Physiol. 2023;64(1):7–18. doi: 10.1093/pcp/pcac123
  • Walter EJ, Hanna-Jumma S, Carraretto M, et al. The pathophysiological basis and consequences of fever. Crit Care. 2016;20(1):200. doi: 10.1186/s13054-016-1375-5
  • Haddad F, Soliman AM, Wong ME, et al. Fever integrates antimicrobial defences, inflammation control, and tissue repair in a cold-blooded vertebrate. Elife. 2023;12:e83644. doi: 10.7554/eLife.83644
  • Gross L. Anatomy of a fever. PLOS Biol. 2006;4(9):e305. doi: 10.1371/journal.pbio.0040305
  • Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of Omics. Physiol (Bethesda). 2015;30(2):97–106. doi: 10.1152/physiol.00066.2013
  • Sezgin Muslu A, Kadıoğlu A. Role of abscisic acid, osmolytes and heat shock factors in high temperature thermotolerance of heliotropium thermophilum. Physiol Mol Biol Plants. 2021;27(4):861–871. doi: 10.1007/s12298-021-00975-7
  • Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. Plant Cell Rep. 2024;43(1):27. doi: 10.1007/s00299-023-03083-w
  • Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature sensation. Annu Rev Neurosci. 2006;29(1):135–161. doi: 10.1146/annurev.neuro.29.051605.112958
  • Zhang M, Ma Y, Ye X, et al. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Sig Transduct Target Ther. 2023;8(1):1–38. doi: 10.1038/s41392-023-01464-x
  • Rosenbaum T, Islas LD. Molecular physiology of TRPV channels: controversies and future challenges. Annu Rev Physiol. 2023;85(1):293–316. doi: 10.1146/annurev-physiol-030222-012349
  • Baez-Nieto D, Castillo JP, Dragicevic C, et al. Thermo-TRP channels: biophysics of polymodal receptors. Adv Exp Med Biol. 2011;704:469–490.
  • Yamamoto T, Vukelic J, Hertzberg EL, et al. Differential anatomical and cellular patterns of connexin43 expression during postnatal development of rat brain. Brain Res Dev Brain Res. 1992;66(2):165–180. doi: 10.1016/0165-3806(92)90077-A
  • Ni L, Bronk P, Chang EC, et al. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature. 2013;500(7464):580–584. doi: 10.1038/nature12390
  • Hamada FN, Rosenzweig M, Kang K, et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008;454(7201):217–220. doi: 10.1038/nature07001
  • Liénard MA, Baez-Nieto D, Tsai C-C, et al. TRPA5 encodes a thermosensitive ankyrin ion channel receptor in a triatomine insect. iScience. 2024;27(4):109541. doi: 10.1016/j.isci.2024.109541
  • Pérez-Cerezales S, Boryshpolets S, Afanzar O, et al. Involvement of opsins in mammalian sperm thermotaxis. Sci Rep. 2015;5(1):16146. doi: 10.1038/srep16146
  • Sokabe T, Chen H-C, Luo J, et al. A switch in thermal preference in drosophila larvae depends on multiple rhodopsins. Cell Rep. 2016;17(2):336–344. doi: 10.1016/j.celrep.2016.09.028
  • Shen WL, Kwon Y, Adegbola AA, et al. Function of rhodopsin in temperature discrimination in drosophila. Science. 2011;331(6022):1333–1336. doi: 10.1126/science.1198904
  • Groemping Y, Reinstein J. Folding properties of the nucleotide exchange factor GrpE from thermus thermophilus: GrpE is a thermosensor that mediates heat shock response 1. J Mol Biol. 2001;314(1):167–178. doi: 10.1006/jmbi.2001.5116
  • Cybulski LE, Ballering J, Moussatova A, et al. Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proc Natl Acad Sci U S A. 2015;112(20):6353–6358. doi: 10.1073/pnas.1422446112
  • Chattopadhyay R, Roy S. DnaK-sigma 32 interaction is temperature-dependent: implication for the mechanism of heat shock response *. J Biol Chem. 2002;277(37):33641–33647. doi: 10.1074/jbc.M203197200
  • Gelinas AD, Langsetmo K, Toth J, et al. A structure-based interpretation of E. coli GrpE thermodynamic properties. J Mol Biol. 2002;323(1):131–142. doi: 10.1016/S0022-2836(02)00915-4
  • Hurme R, Berndt KD, Normark SJ, et al. A proteinaceous gene regulatory thermometer in Salmonella. Cell. 1997;90(1):55–64. doi: 10.1016/S0092-8674(00)80313-X
  • Almblad H, Randall TE, Liu F, et al. Bacterial cyclic diguanylate signaling networks sense temperature. Nat Commun. 2021;12(1):1986. doi: 10.1038/s41467-021-22176-2
  • Moro F, Muga A. Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor. J Mol Biol. 2006;358(5):1367–1377. doi: 10.1016/j.jmb.2006.03.027
  • Marada A, Karri S, Singh S, et al. A single point mutation in mitochondrial Hsp70 cochaperone Mge1 gains thermal stability and resistance. Biochemistry. 2016;55(51):7065–7072. doi: 10.1021/acs.biochem.6b00232
  • Hentze N, Le Breton L, Wiesner J, et al. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. Elife. 2016;5:e11576. doi: 10.7554/eLife.11576
  • Bohn L, Huang J, Weidig S, et al. The temperature sensor TWA1 is required for thermotolerance in arabidopsis. Nature. 2024;629(8014):1126–1132. doi: 10.1038/s41586-024-07424-x
  • Anbalagan S. Heme-based oxygen gasoreceptors. Am J Physiol Endocrinol Metab. 2024;326(2):E178–81. doi: 10.1152/ajpendo.00004.2024
  • Anbalagan S. Oxygen is an essential gasotransmitter directly sensed via protein gasoreceptors. Anim Model Exp Med. 2024;7(2):189–193. doi: 10.1002/ame2.12400
  • Aono S. Gas sensing in cells. United Kingdom: Royal Society of Chemistry; 2017.
  • Zhou J, Del Rosal B, Jaque D, et al. Advances and challenges for fluorescence nanothermometry. Nat Methods. 2020;17(10):967–980. doi: 10.1038/s41592-020-0957-y
  • Di X, Wang D, Su QP, et al. Spatiotemporally mapping temperature dynamics of lysosomes and mitochondria using cascade organelle-targeting upconversion nanoparticles. Proc Natl Acad Sci USA. 2022;119(45):e2207402119. doi: 10.1073/pnas.2207402119
  • Okabe K, Uchiyama S. Intracellular thermometry uncovers spontaneous thermogenesis and associated thermal signaling. Commun Biol. 2021;4(1):1–7. doi: 10.1038/s42003-021-02908-2
  • Tanimoto R, Hiraiwa T, Nakai Y, et al. Detection of temperature difference in neuronal cells. Sci Rep. 2016;6(1):22071. doi: 10.1038/srep22071
  • Terzioglu M, Veeroja K, Montonen T, et al. Mitochondrial temperature homeostasis resists external metabolic stresses. Elife. 2023;12: RP89232.10.7554/eLife.89232.3
  • Chrétien D, Bénit P, H-H H, et al. Mitochondria are physiologically maintained at close to 50 °C. PLOS Biol. 2018;16(1):e2003992. doi: 10.1371/journal.pbio.2003992
  • Hayashi T, Fukuda N, Uchiyama S, et al. A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines. PLOS ONE. 2015;10(2):e0117677. doi: 10.1371/journal.pone.0117677
  • Parsons RC. On the working of Punkahs in India; as at present carried out by coolie labour, and the same operation effected by machinery. London-New York. 1878.
  • Sengupta R. (2022). Keeping the master cool, every day, all day: Punkah-pulling in colonial India. The Indian Economic & Social History Review, 59(1), 37–73. doi: 10.1177/00194646211064592
  • Anbalagan S. 2024. Heme-based aquareceptors. Postepy Biochem. doi: 10.18388/pb.2021_551
  • Elias M, Wieczorek G, Rosenne S, et al. The universality of enzymatic rate–temperature dependency. Trends Biochem Sci. 2014;39(1):1–7. doi: 10.1016/j.tibs.2013.11.001
  • Anbalagan S. “Blind men and an elephant”: the need for animals in research, drug safety studies, and understanding civilizational diseases. Anim Model Exp Med. 2023;6(6):627–633. doi: 10.1002/ame2.12364
  • Vu LD, Gevaert K, De Smet I. Feeling the heat: searching for plant thermosensors. Trends Plant Sci. 2019;24(3):210–219. doi: 10.1016/j.tplants.2018.11.004
  • Jung J-H, Seo PJ, Oh E, et al. Temperature perception by plants. Trends Plant Sci. 2023;28(8):924–940. doi: 10.1016/j.tplants.2023.03.006
  • Lancet D, Zidovetzki R, Markovitch O. Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface. 2018;15(144):20180159. doi: 10.1098/rsif.2018.0159
  • Cavalier-Smith T. Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J Mol Evol. 2001;53(4–5):555–595. doi: 10.1007/s002390010245
  • Stephenson W, Keller S, Santiago R, et al. Combining temperature and force to study folding of an RNA hairpin. Phys Chem Chem Phys. 2013;16(3):906–917. doi: 10.1039/C3CP52042K
  • Meyer S, Carlson PD, Lucks JB. Characterizing the structure–function relationship of a naturally occurring RNA thermometer. Biochemistry. 2017;56(51):6629–6638. doi: 10.1021/acs.biochem.7b01170
  • Loh E, Righetti F, Eichner H, et al. RNA thermometers in bacterial pathogens. Microbiol Spectr. 2018;6(2):6. doi: 10.1128/microbiolspec.RWR-0012-2017
  • Mandin P, Johansson J. Feeling the heat at the millennium: thermosensors playing with fire. Mol Microbiol. 2020;113(3):588–592. doi: 10.1111/mmi.14468
  • Somero GN. RNA thermosensors: how might animals exploit their regulatory potential? J Exp Biol. 2018;221(4):jeb162842. doi: 10.1242/jeb.162842
  • Chowdhury S, Maris C, Allain FH, et al. Molecular basis for temperature sensing by an RNA thermometer. Embo J. 2006;25(11):2487–2497. doi: 10.1038/sj.emboj.7601128
  • Morita MT, Tanaka Y, Kodama TS, et al. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev. 1999;13(6):655–665. doi: 10.1101/gad.13.6.655
  • Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol. 1993;175(24):7901–7909. doi: 10.1128/jb.175.24.7901-7909.1993
  • Böhme K, Steinmann R, Kortmann J, et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PlOS Pathog. 2012;8(2):e1002518. doi: 10.1371/journal.ppat.1002518
  • Jha UC, Nayyar H, Roychowdhury R, et al. Non-coding RNAs (ncRNAs) in plant: master regulators for adapting to extreme temperature conditions. Plant Physiol Biochem. 2023;205:108164. doi: 10.1016/j.plaphy.2023.108164
  • Yuan C, He R, Zhao W, et al. Insights into the roles of long noncoding RNAs in the communication between plants and the environment. Plant Genome. 2023;16(4):e20277. doi: 10.1002/tpg2.20277
  • Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol. 2004;5(6):451–463. doi: 10.1038/nrm1403
  • Grojean J, Downes B. Riboswitches as hormone receptors: hypothetical cytokinin-binding riboswitches in Arabidopsis thaliana. Biol Direct. 2010;5(1):60. doi: 10.1186/1745-6150-5-60
  • Reining A, Nozinovic S, Schlepckow K, et al. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature. 2013;499(7458):355–359. doi: 10.1038/nature12378
  • Walter NG, Engelke DR. Ribozymes: catalytic RNAs that cut things, make things, and do odd and useful jobs. Biologist (Lond). 2002;49(5):199–203.
  • White N, Sadeeshkumar H, Sun A, et al. Lithium-sensing riboswitch classes regulate expression of bacterial cation transporter genes. Sci Rep. 2022;12(1):19145. doi: 10.1038/s41598-022-20695-6
  • White N, Sadeeshkumar H, Sun A, et al. Na+ riboswitches regulate genes for diverse physiological processes in bacteria. Nat Chem Biol. 2022;18(8):878–885. doi: 10.1038/s41589-022-01086-4
  • Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 2002;419(6910):952–956. doi: 10.1038/nature01145
  • Sudarsan N, Wickiser JK, Nakamura S, et al. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. 2003;17(21):2688–2697. doi: 10.1101/gad.1140003
  • Wedekind JE, Dutta D, Belashov IA, et al. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J Biol Chem. 2017;292(23):9441–9450. doi: 10.1074/jbc.R117.787713
  • Shah P, Gilchrist MA, Spirin AS. Is thermosensing property of RNA thermometers unique? PLOS ONE. 2010;5(7):e11308. doi: 10.1371/journal.pone.0011308
  • Churkin A, Avihoo A, Shapira M, et al. RNAthermsw: direct temperature simulations for predicting the location of RNA thermometers. PLOS ONE. 2014;9(4):e94340. doi: 10.1371/journal.pone.0094340
  • Waldminghaus T, Gaubig LC, Narberhaus F. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol Genet Genomics. 2007;278(5):555–564. doi: 10.1007/s00438-007-0272-7
  • Chursov A, Kopetzky SJ, Bocharov G, et al. RNAtips: analysis of temperature-induced changes of RNA secondary structure. Nucleic Acids Res. 2013;41(W1):W486–491. doi: 10.1093/nar/gkt486
  • Sato K, Akiyama M, Sakakibara Y. RNA secondary structure prediction using deep learning with thermodynamic integration. Nat Commun. 2021;12(1):941. doi: 10.1038/s41467-021-21194-4
  • Zhang J, Lang M, Zhou Y, et al. Predicting RNA structures and functions by artificial intelligence. Trends Genet. 2024;40(1):94–107. doi: 10.1016/j.tig.2023.10.001
  • Narayan S, Kombrabail MH, Das S, et al. Site-specific fluorescence dynamics in an RNA ‘thermometer’ reveals the role of ribosome binding in its temperature-sensitive switch function. Nucleic Acids Res. 2015;43(1):493–503. doi: 10.1093/nar/gku1264
  • Riera CE, Vogel H, Simon SA, et al. Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R626–634. doi: 10.1152/ajpregu.00286.2007
  • Oláh Z, Jósvay K, Pecze L, et al. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel. PLOS ONE. 2007;2(6):e545. doi: 10.1371/journal.pone.0000545
  • Ahern GP, Brooks IM, Miyares RL, et al. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci. 2005;25(21):5109–5116. doi: 10.1523/JNEUROSCI.0237-05.2005
  • Singh AK, McGoldrick LL, Demirkhanyan L, et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat Struct Mol Biol. 2019;26(11):994–998. doi: 10.1038/s41594-019-0318-7
  • Gao Y, Cao E, Julius D, et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534(7607):347–351. doi: 10.1038/nature17964
  • Fürtig B, Oberhauser EM, Zetzsche H, et al. Refolding through a linear transition state enables fast temperature adaptation of a translational Riboswitch. Biochemistry. 2020;59(10):1081–1086. doi: 10.1021/acs.biochem.9b01044
  • Wu L, Liu Z, Liu Y. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch. RNA Biol. 2021;18(11):2007–2015. doi: 10.1080/15476286.2021.1886755
  • Ponce-Salvatierra A, Wawrzyniak-Turek K, Steuerwald U, et al. Crystal structure of a DNA catalyst. Nature. 2016;529(7585):231–234. doi: 10.1038/nature16471
  • Dong X, Qiu Z, Wang Z, et al. Efficient Silver(I)-containing i-motif DNA hybrid catalyst for Enantioselective Diels-Alder reactions. Angew Chem Int Ed Engl. 2024:e202407838. doi: 10.1002/anie.202407838
  • Cozma I, Em M, Brennan JD, et al. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosens Bioelectron. 2021;177:112972. doi: 10.1016/j.bios.2021.112972
  • Okamoto C, Momotake A, Yamamoto Y. Structural and functional characterization of complexes between heme and dimeric parallel G-quadruplex DNAs. J Inorg Biochem. 2021;216:111336. doi: 10.1016/j.jinorgbio.2020.111336
  • Driessen RPC, Sitters G, Laurens N, et al. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry. 2014;53(41):6430–6438. doi: 10.1021/bi500344j
  • Brunet A, Salomé L, Rousseau P, et al. How does temperature impact the conformation of single DNA molecules below melting temperature? Nucleic Acids Res. 2018;46(4):2074–2081. doi: 10.1093/nar/gkx1285
  • Mizushima T, Kataoka K, Ogata Y, et al. Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol Microbiol. 1997;23(2):381–386. doi: 10.1046/j.1365-2958.1997.2181582.x
  • Birk MA, Liscovitch-Brauer N, Dominguez MJ, et al. Temperature-dependent RNA editing in octopus extensively recodes the neural proteome. Cell. 2023;186(12):2544–2555.e13. doi: 10.1016/j.cell.2023.05.004
  • Li W, Bu M, Hu R, et al. Tissue-specific temperature dependence of RNA editing levels in zebrafish. BMC Biol. 2023;21(1):262. doi: 10.1186/s12915-023-01738-4
  • Su R, Zhou M, Lin J, et al. A circular RNA-gawky-chromatin regulatory axis modulates stress-induced transcription. Nucleic Acids Res. 2024;52(7):3702–3721. doi: 10.1093/nar/gkae157
  • Anbalagan S. Gas-sensing riboceptors. RNA Biol. 2024 doi: 10.1080/15476286.2024.2379607