1,467
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exposure to the anti-microbial chemical triclosan disrupts keratinocyte function and skin integrity in a model of reconstructed human epidermis

, , , , &
Article: 2148781 | Received 20 Jul 2022, Accepted 11 Nov 2022, Published online: 16 Dec 2022

References

  • Albérola G, Schroder J, Froment C, Simon M. 2019. The amino-terminal part of human Flg2 is a component of cornified envelopes. J Invest Dermatol. 139(6):1395–1397.
  • Anderson S, Baur R, Kashon M, Lukomska E, Weatherly L, Shane H. 2020. Potential classification of chemical immunologic response based on gene expression profiles. J Immunotoxicol. 17(1):122–134.
  • Anderson S, Franko J, Kashon M, Anderson K, Hubbs A, Lukomska E, Meade B. 2013. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma. Toxicol Sci. 132(1):96–106.
  • Anderson S, Meade B, Long C, Lukomska E, Marshall N. 2016. Investigations of immuno-toxicity and allergic potential induced by topical application of triclosan in mice. J Immunotoxicol. 13(2):165–172.
  • Anderson S, Weatherly L, Shane H. 2019. Contribution of anti-microbials to the development of allergic disease. Curr Opin Immunol. 60:91–95.
  • Baur R, Gandhi J, Marshall N, Lukomska E, Weatherly L, Shane H, Hu G, Anderson S. 2021. Dermal exposure to the immunomodulatory anti-microbial chemical triclosan alters the skin barrier integrity and microbiome in mice. Toxicol Sci. 184(2):223–235.
  • BLS (Bureau of Labor Statistics). 2022. Table B-1a. Employees on non-farm payrolls by industry sector and selected industry detail, seasonally-adjusted. Washington, DC: U.S. Bureau of Labor Statistics.
  • Buhl A, Wenzel J. 2019. Interleukin-36 in infectious and inflammatory skin diseases. Front Immunol. 10:1162.
  • DeLima Associates. Consumer Product Information Database. 2022. McLean, Virginia. https://www.whatsinproducts.com/
  • Fang J, Stingley R, Beland F, Harrouk W, Lumpkins D, Howard P. 2010. Occurrence, efficacy, metabolism, and toxicity of triclosan. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 28(3):147–171.
  • Fang J, Vanlandingham M, da Costa G, Beland F. 2016. Absorption and metabolism of triclosan after application to the skin of B6C3F1 mice. Environ Toxicol. 31:609–623.
  • Fang J, Vanlandingham M, Juliar B, Olson G, Patton R, Beland F. 2015. Dose-response assessment of the dermal toxicity of triclosan in B6C3F1 mice. Toxicol Res. 4(4):867–877.
  • FDA (Food and Drug Administration). 2016. Safety and effectiveness of consumer antiseptics: Topical anti-microbial drug products for over-the-counter human use. Final rule. Fed Regist. 81:61106–61130.
  • Frankart A, Malaisse J, de Vuyst E, Minner F, de Rouvroit C, Poumay Y. 2012. Epidermal morphogenesis during progressive in vitro 3D reconstruction at the air-liquid interface. Exp Dermatol. 21(11):871–875.
  • Franzke C, Cobzaru C, Triantafyllopoulou A, Löffek S, Horiuchi K, Threadgill D, Kurz T, van Rooijen N, Bruckner-Tuderman L, Blobel C. 2012. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J Exp Med. 209(6):1105–1119.
  • Goleva E, Berdyshev E, Leung D. 2019. Epithelial barrier repair and prevention of allergy. J Clin Invest. 129(4):1463–1474.
  • Gutowska-Owsiak D, Ogg G. 2013. Cytokine regulation of the epidermal barrier. Clin Exp Allergy. 43(6):586–598.
  • Hammad H, Lambrecht BN. 2015. Barrier epithelial cells and control of type 2 immunity. Immunity. 43(1):29–40.
  • Hirota R, Ohya Y, Yamamoto-Hanada K, Fukutomi Y, Muto G, Ngatu N, Nakamura T, Nakamura H. 2019. Triclosan-induced alteration of gut microbiome and aggravation of asthmatic airway response in aeroallergen-sensitized mice. Allergy. 74(5):996–999.
  • Jiang Y, Tsoi L, Billi A, Ward N, Harms P, Zeng C, Maverakis E, Kahlenberg J, Gudjonsson J. 2020. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight. 5(20):e142067.
  • Jones R, Jampani H, Newman J, Lee A. 2000. Triclosan: A review of effectiveness and safety in health care settings. Am J Infect Control. 28(2):184–196.
  • Kelleher M, Dunn-Galvin A, Gray C, Murray D, Kiely M, Kenny L, McLean W, Irvine A, Hourihane J. 2016. Skin barrier impairment at birth predicts food allergy at 2 years of age. J Allergy Clin Immunol. 137(4):1111–1116.e8.
  • Kelleher M, Dunn-Galvin A, Hourihane J, Murray D, Campbell L, McLean W, Irvine A. 2015. Skin barrier dysfunction measured by transepidermal water loss at 2 days and 2 months predates and predicts atopic dermatitis at 1 year. J Allergy Clin Immunol. 135(4):930–935.e1.
  • Kim J, Bae H, Ko N, Lee S, Jeong S, Lee H, Ryu W, Kye Y, Son S. 2015. Thymic stromal lymphopoietin down-regulates filaggrin expression by signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) phosphorylation in keratinocytes. J Allergy Clin Immunol. 136(1):205–208.e9.
  • Kirschner N, Rosenthal R, Furuse M, Moll I, Fromm M, Brandner J. 2013. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Invest Dermatol. 133(5):1161–1169.
  • Liang Y, Zhang H, Cai Z. 2021. New insights into the cellular mechanism of triclosan-induced dermal toxicity from a combined metabolomic and lipidomic approach. Sci Total Environ. 757:143976.
  • Livak K, Schmittgen T. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods. 25(4):402–408.
  • MacIsaac J, Gerona R, Blanc P, Apatira L, Friesen M, Coppolino M, Janssen S. 2014. Health care worker exposures to the anti-bacterial agent triclosan. J Occup Environ Med. 56(8):834–839.
  • Marshall N, Lukomska E, Long C, Kashon M, Sharpnack D, Nayak A, Anderson K, Meade B, Anderson S. 2015. Triclosan induces thymic stromal lymphopoietin in skin promoting TH2 allergic responses. Toxicol Sci. 147(1):127–139.
  • Marshall N, Lukomska E, Nayak A, Long C, Hettick J, Anderson S. 2017. Topical application of the anti-microbial chemical triclosan induces immunomodulatory responses through the S100A8/A9-TLR4 pathway. J Immunotoxicol. 14(1):50–59.
  • Mildner M, Jin J, Eckhart L, Kezic S, Gruber F, Barresi C, Stremnitzer C, Buchberger M, Mlitz V, Ballaun C, et al. 2010. Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. J Invest Dermatol. 130(9):2286–2294.
  • Niehues H, Bouwstra J, El Ghalbzouri A, Brandner J, Zeeuwen P, van den Bogaard E. 2018. 3D skin models for 3R research: the potential of 3D reconstructed skin models to study skin barrier function. Exp Dermatol. 27(5):501–511.
  • Niehues H, Schalkwijk J, van Vlijmen-Willems I, Rodijk-Olthuis D, van Rossum M, Wlady-Kowski E, Brandner J, van den Bogaard E, Zeeuwen P. 2017. Epidermal equivalents of filaggrin null keratinocytes do not show impaired skin barrier function. J Allergy Clin Immunol. 139(6):1979–1981.e13.
  • NIOSH (National Institute of Occupational Safety and Health). 2021. NIOISH strategic plan: FY 2019–2024. Version 5. October 2021 Edition. Atlanta: Centers for Disease Control and Prevention.
  • NORA (National Occupational Research Agenda). 2019. National Occupational Research Agenda for immune, infectious and dermal disease prevention (iid). [accessed 2022 May]. https://www.cdc.gov/nora/councils/iid/agenda.html.
  • Pendaries VL, Lamer M, Cau L, Hansmann B, Malaisse J, Kezic S, Serre G, Simon M. 2015. In a three-dimensional reconstructed human epidermis, filaggrin-2 is essential for proper cornification. Cell Death Dis. 6(2):e1656–e1656.
  • Pendaries V, Malaisse J, Pellerin L, Le Lamer M, Nachat R, Kezic S, Schmitt A, Paul C, Poumay Y, Serre G, et al. 2014. Knockdown of filaggrin in a three-dimensional reconstructed human epidermis impairs keratinocyte differentiation. J Invest Dermatol. 134(12):2938–2946.
  • Pfaff C, Marquardt Y, Fietkau K, Baron J, Luscher B. 2017. The psoriasis-associated IL-17a induces and cooperates with IL-36 cytokines to control keratinocyte differentiation and function. Sci Rep. 7(1):15631.
  • Rietz Liljedahl E, Johanson G, Korres de Paula H, Faniband M, Assarsson E, Littorin M, Engfeldt M, Liden C, Julander A, Wahlberg K, et al. 2021. Filaggrin polymorphisms and the uptake of chemicals through the skin – a human experimental study. Environ Health Perspect. 129(1):17002.
  • Savage J, Johns C, Hauser R, Litonjua A. 2014. Urinary triclosan levels and recent asthma exacerbations. Ann Allergy Asthma Immunol. 112(2):179–181.e2.
  • Savage J, Matsui E, Wood R, Keet C. 2012. Urinary levels of triclosan and parabens are associated with aeroallergen and food sensitization. J Allergy Clin Immunol. 130(2):453–460.e7.
  • Tobar S, Tordesillas L, Berin M. 2016. Triclosan promotes epicutaneous sensitization to peanut in mice. Clin Transl Allergy. 6:13.
  • Tsilingiri K, Fornasa G, Rescigno M. 2017. Thymic stromal lymphopoietin: to cut a long story short. Cell Mol Gastroenterol Hepatol. 3(2):174–182.
  • Weatherly L, Shane H, Friend S, Lukomska E, Baur R, Anderson S. 2020. Topical application of anti-microbial agent triclosan induces NLRP3 inflammasome activation and mitochondrial dysfunction. Toxicol Sci. 176(1):147–161.
  • Weatherly L, Gosse J. 2017. Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health B Crit Rev. 20(8):447–469.
  • Wu Y, Beland FA, Chen S, Fang J. 2015. Extracellular signal-regulated kinases-1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 CL 41-5a cells. Arch Toxicol. 89(8):1297–1311.