4,344
Views
54
CrossRef citations to date
0
Altmetric
Articles

Estimating ground-level particulate matter concentrations using satellite-based data: a review

ORCID Icon, ORCID Icon, , , ORCID Icon &
Pages 174-189 | Received 15 Sep 2019, Accepted 02 Dec 2019, Published online: 16 Dec 2019

References

  • Ackerman, S. A., and K. I. Strabala. 1994. “Satellite Remote Sensing of H2SO4 Aerosol Using the 8- to 12-μm Window Region: Application to Mount Pinatubo.” Journal of Geophysical Research: Atmospheres 99 (D9): 18639–18649. doi:10.1029/94JD01331.
  • Anenberg, S. C., J. J. West, H. Yu, M. Chin, M. Schulz, D. Bergmann, I. Bey, et al. 2014. “Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality.” Air Quality, Atmosphere & Health 7 (3): 369–379. doi:10.1007/s11869-014-0248-9.
  • Bai, K., M. Ma, N.-B. Chang, and W. Gao. 2019. “Spatiotemporal Trend Analysis for Fine Particulate Matter Concentrations in China Using High-resolution Satellite-derived and Ground-measured PM2.5 Data.” Journal of Environmental Management 233: 530–542. doi:10.1016/j.jenvman.2018.12.071.
  • Bai, Y., L. Wu, K. Qin, Y. Zhang, Y. Shen, and Y. Zhou. 2016. “A Geographically and Temporally Weighted Regression Model for Ground-level PM2.5 Estimation from Satellite-derived 500 M Resolution AOD.” Remote Sensing 8 (3): 262. doi:10.3390/rs8030262.
  • Baihuiqian, H., R. M. Heal, and S. Reis. 2018. “Land-Use Regression Modelling of Intra-Urban Air Pollution Variation in China: Current Status and Future Needs.” Atmosphere 9: 4. doi:10.3390/atmos9040134.
  • Bi, J., J. H. Belle, Y. Wang, A. I. Lyapustin, A. Wildani, and Y. Liu. 2019. “Impacts of Snow and Cloud Covers on Satellite-derived PM2.5 Levels.” Remote Sensing of Environment 221: 665–674. doi:10.1016/j.rse.2018.12.002.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
  • Brokamp, C., R. Jandarov, M. Hossain, and P. Ryan. 2018. “Predicting Daily Urban Fine Particulate Matter Concentrations Using a Random Forest Model.” Environmental Science & Technology 52 (7): 4173–4179. doi:10.1021/acs.est.7b05381.
  • Chen, F., W. T. Crow, A. Colliander, M. H. Cosh, T. J. Jackson, R. Bindlish, R. H. Reichle, et al. 2017. “Application of Triple Collocation in Ground-Based Validation of Soil Moisture Active/Passive (SMAP) Level 2 Data Products.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (2): 489–502. doi:10.1109/JSTARS.2016.2569998.
  • Chen, G., L. D. Knibbs, W. Zhang, S. Li, W. Cao, J. Guo, H. Ren, et al. 2018a. “Estimating Spatiotemporal Distribution of PM1 Concentrations in China with Satellite Remote Sensing, Meteorology, and Land Use Information.” Environmental Pollution 233 :1086–1094. doi:10.1016/j.envpol.2017.10.011.
  • Chen, G., S. Li, L. D. Knibbs, N. A. S. Hamm, W. Cao, T. Li, J. Guo, H. Ren, M. J. Abramson, and Y. Guo. 2018b. “A Machine Learning Method to Estimate PM2.5 Concentrations across China with Remote Sensing, Meteorological and Land Use Information.” Science of the Total Environment 636: 52–60. doi:10.1016/j.scitotenv.2018.04.251.
  • Chen, T., and C. Guestrin. 2016. “XGBoost: A Scalable Tree Boosting System.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. San Francisco, California, USA: ACM.
  • Chen, Y., W. Han, S. Chen, and L. Tong. 2014. Estimating Ground-level PM2.5 Concentration Using Landsat 8 in Chengdu, China. Vol. 9259. SPIE Asia-Pacific Remote Sensing: SPIE. Beijing, China.
  • Chen, Z.-Y., T.-H. Zhang, R. Zhang, Z.-M. Zhu, J. Yang, P.-Y. Chen, C.-Q. Ou, and Y. Guo. 2019. “Extreme Gradient Boosting Model to Estimate PM2.5 Concentrations with Missing-filled Satellite Data in China.” Atmospheric Environment 202: 180–189. doi:10.1016/j.atmosenv.2019.01.027.
  • Chu, Y., Y. Liu, X. Li, Z. Liu, H. Lu, Y. Lu, Z. Mao, X. Chen, N. Li, and M. Ren. 2016. “A Review on Predicting Ground PM2.5 Concentration Using Satellite Aerosol Optical Depth.” Atmosphere 7 (10): 129. doi:10.3390/atmos7100129.
  • Chudnovsky, A. A., P. Koutrakis, I. Kloog, S. Melly, F. Nordio, A. Lyapustin, Y. Wang, and J. Schwartz. 2014. “Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals.” Atmospheric Environment 89: 189–198. doi:10.1016/j.atmosenv.2014.02.019.
  • de Hoogh, K., H. Héritier, M. Stafoggia, N. Künzli, and I. Kloog. 2018. “Modelling Daily PM2.5 Concentrations at High Spatio-temporal Resolution across Switzerland.” Environmental Pollution 233: 1147–1154. doi:10.1016/j.envpol.2017.10.025.
  • de Hoogh, K., J. Gulliver, A. van Donkelaar, R. V. Martin, J. D. Marshall, M. J. Bechle, G. Cesaroni, M. C. Pradas, A. Dedele, and M. Eeftens. 2016. “Development of West-European PM2.5 And NO2 Land Use Regression Models Incorporating Satellite-derived and Chemical Transport Modelling Data.” Environmental Research 151: 1–10. doi:10.1016/j.envres.2016.07.005.
  • Di, Q., H. Amini, L. Shi, I. Kloog, R. Silvern, J. Kelly, M. B. Sabath, et al. 2019. “An Ensemble-based Model of PM2.5 Concentration across the Contiguous United States with High Spatiotemporal Resolution.” Environment International 130 :104909. doi:10.1016/j.envint.2019.104909.
  • Di, Q., I. Kloog, P. Koutrakis, A. Lyapustin, Y. Wang, and J. Schwartz. 2016. “Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States.” Environmental Science & Technology 50 (9): 4712–4721. doi:10.1021/acs.est.5b06121.
  • Dumitrache, R. C., A. Iriza, B. A. Maco, C. D. Barbu, M. Hirtl, S. Mantovani, O. Nicola, A. Irimescu, V. Craciunescu, and A. Ristea. 2016. “Study on the Influence of Ground and Satellite Observations on the Numerical Air-quality for PM10 over Romanian Territory.” Atmospheric Environment 143: 278–289. doi:10.1016/j.atmosenv.2016.08.063.
  • Fang, X., B. Zou, X. Liu, T. Sternberg, and L. Zhai. 2016. “Satellite-based Ground PM2.5 Estimation Using Timely Structure Adaptive Modeling.” Remote Sensing of Environment 186: 152–163. doi:10.1016/j.rse.2016.08.027.
  • Friedman, J. H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” The Annals of Statistics 29 (5): 1189–1232. doi:10.1214/aos/1013203451.
  • Fukushima, H., and M. Toratani. 1997. “Asian Dust Aerosol: Optical Effect on Satellite Ocean Color Signal and a Scheme of Its Correction.” Journal of Geophysical Research: Atmospheres 102 (D14): 17119–17130. doi:10.1029/96JD03747.
  • Geng, G., N. L. Murray, D. Tong, S. Joshua, X. H. Fu, P. Lee, X. Meng, H. H. Chang, and Y. Liu. 2018b. “Satellite-Based Daily PM2.5 Estimates during Fire Seasons in Colorado.” Journal of Geophysical Research: Atmospheres 123 (15): 8159–8171. doi:10.1029/2018JD028573.
  • Geng, G., N. L. Murray, H. H. Chang, and Y. Liu. 2018a. “The Sensitivity of Satellite-based PM2.5 Estimates to Its Inputs: Implications to Model Development in Data-poor Regions.” Environment International 121: 550–560. doi:10.1016/j.envint.2018.09.051.
  • Geng, G., Q. Zhang, R. V. Martin, A. van Donkelaar, H. Huo, H. Che, J. Lin, and K. He. 2015. “Estimating Long-term PM2.5 Concentrations in China Using Satellite-based Aerosol Optical Depth and a Chemical Transport Model.” Remote Sensing of Environment 166: 262–270. doi:10.1016/j.rse.2015.05.016.
  • Ghotbi, S., S. Sotoudeheian, and M. Arhami. 2016. “Estimating Urban Ground-level PM10 Using MODIS 3km AOD Product and Meteorological Parameters from WRF Model.” Atmospheric Environment 141: 333–346. doi:10.1016/j.atmosenv.2016.06.057.
  • Goldberg, D. L., P. Gupta, K. Wang, C. Jena, Y. Zhang, Z. Lu, and D. G. Streets. 2019. “Using Gap-filled MAIAC AOD and WRF-Chem to Estimate Daily PM2.5 Concentrations at 1 Km Resolution in the Eastern United States.” Atmospheric Environment 199: 443–452. doi:10.1016/j.atmosenv.2018.11.049.
  • Gong, W., Y. Huang, T. Zhang, Z. Zhu, Y. Ji, and H. Xiang. 2017. “Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China.” Remote Sensing 9: 10. doi:10.3390/rs9101038.
  • Gruber, A., C. H. Su, S. Zwieback, W. Crow, W. Dorigo, and W. Wagner. 2016. “Recent advances in (soil moisture) triple collocation analysis.” International Journal of Applied Earth Observation and Geoinformation 45: 200-11. doi:10.1016/j.jag.2015.09.002.
  • Guo, Y., Q. Tang, D.-Y. Gong, and Z. Zhang. 2017. “Estimating Ground-level PM2.5 Concentrations in Beijing Using a Satellite-based Geographically and Temporally Weighted Regression Model.” Remote Sensing of Environment 198: 140–149. doi:10.1016/j.rse.2017.06.001.
  • Gupta, P., and S. A. Christopher. 2009a. “Particulate Matter Air Quality Assessment Using Integrated Surface, Satellite, and Meteorological Products: 2. A Neural Network Approach.” Journal of Geophysical Research: Atmospheres 114 (D20): D20205, doi:10.1029/2008JD011497.
  • Gupta, P., and S. A. Christopher. 2009b. “Particulate Matter Air Quality Assessment Using Integrated Surface, Satellite, and Meteorological Products: Multiple Regression Approach.” Journal of Geophysical Research: Atmospheres 114 (D14): D14205, doi:10.1029/2008JD011496.
  • Han, W., L. Tong, Y. Chen, R. Li, B. Yan, and X. Liu. 2018. “Estimation of High-Resolution Daily Ground-Level PM2.5 Concentration in Beijing 2013–2017 Using 1 Km MAIAC AOT Data.” Applied Sciences 8 (12). doi:10.3390/app8122624.
  • He, Q., and B. Huang. 2018a. “Satellite-based High-resolution PM2.5 Estimation over the Beijing-Tianjin-Hebei Region of China Using an Improved Geographically and Temporally Weighted Regression Model.” Environmental Pollution 236: 1027–1037. doi:10.1016/j.envpol.2018.01.053.
  • He, Q., and B. Huang. 2018b. “Satellite-based Mapping of Daily High-resolution Ground PM 2.5 In China via Space-time Regression Modeling.” Remote Sensing of Environment 206: 72–83. doi:10.1016/j.rse.2017.12.018.
  • Hu, X., J. H. Belle, X. Meng, A. Wildani, L. A. Waller, M. J. Strickland, and Y. Liu. 2017. “Estimating PM2.5 Concentrations in the Conterminous United States Using the Random Forest Approach.” Environmental Science & Technology 51 (12): 6936–6944. doi:10.1021/acs.est.7b01210.
  • Hu, X., L. A. Waller, M. Z. Al-Hamdan, W. L. Crosson, M. G. Estes, S. M. Estes, D. A. Quattrochi, J. A. Sarnat, and Y. Liu. 2013. “Estimating Ground-level PM2.5 Concentrations in the Southeastern U.S. Using Geographically Weighted Regression.” Environmental Research 121: 1–10. doi:10.1016/j.envres.2012.11.003.
  • Hua, Z., W. Sun, G. Yang, and Q. Du. 2019. “A Full-Coverage Daily Average PM2.5 Retrieval Method with Two-Stage IVW Fused MODIS C6 AOD and Two-Stage GAM Model.” Remote Sensing 11 (13). doi:10.3390/rs11131558.
  • Huang, K., Q. Xiao, X. Meng, G. Geng, Y. Wang, A. Lyapustin, D. Gu, and Y. Liu. 2018. “Predicting Monthly High-resolution PM2.5 Concentrations with Random Forest Model in the North China Plain.” Environmental Pollution 242: 675–683. doi:10.1016/j.envpol.2018.07.016.
  • James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112. New York: Springer.
  • Jiang, M., W. Sun, G. Yang, and D. Zhang. 2017. “Modelling Seasonal GWR of Daily PM2.5 With Proper Auxiliary Variables for the Yangtze River Delta.” Remote Sensing 9 (4): 346. doi:10.3390/rs9040346.
  • Jiang, Q., and G. Christakos. 2018. “Space-time Mapping of Ground-level PM2.5 And NO2 Concentrations in Heavily Polluted Northern China during Winter Using the Bayesian Maximum Entropy Technique with Satellite Data.” Air Quality, Atmosphere & Health 11 (1): 23–33. doi:10.1007/s11869-017-0514-8.
  • Jung, C.-R., B.-F. Hwang, and W.-T. Chen. 2018. “Incorporating Long-term Satellite-based Aerosol Optical Depth, Localized Land Use Data, and Meteorological Variables to Estimate Ground-level PM2.5 Concentrations in Taiwan from 2005 to 2015.” Environmental Pollution 237: 1000–1010. doi:10.1016/j.envpol.2017.11.016.
  • King, M. D., Y. J. Kaufman, D. Tanré, and T. Nakajima. 1999. “Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future.” Bulletin of the American Meteorological Society 80 (11): 2229–2260. doi:10.1175/1520-0477(1999)080<2229:RSOTAF>2.0.CO;2.
  • Kloog, I., A. A. Chudnovsky, A. C. Just, F. Nordio, B. A. Petros Koutrakis, A. L. Coull, Y. Wang, and J. Schwartz. 2014. “A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations across Northeastern USA Using High Resolution Aerosol Optical Depth Data.” Atmospheric Environment 95: 581–590. doi:10.1016/j.atmosenv.2014.07.014.
  • Kloog, I., B. A. Petros Koutrakis, H. Coull, J. Lee, and J. Schwartz. 2011. “Assessing Temporally and Spatially Resolved PM2.5 Exposures for Epidemiological Studies Using Satellite Aerosol Optical Depth Measurements.” Atmospheric Environment 45 (35): 6267–6275. doi:10.1016/j.atmosenv.2011.08.066.
  • Kloog, I., M. Sorek-Hamer, A. Lyapustin, B. Coull, A. C. Yujie Wang, J. S. Just, and D. M. Broday. 2015. “Estimating Daily PM2.5 And PM10 across the Complex Geo-climate Region of Israel Using MAIAC Satellite-based AOD Data.” Atmospheric Environment 122: 409–416. doi:10.1016/j.atmosenv.2015.10.004.
  • Korea Meteorological Administration. 2015. “Forecaster Training Manual (Satellite Meteorology).” http://web.kma.go.kr/down/e-learning/middle/middle_06_1.pdf
  • Kumar, R., L. D. Monache, J. Bresch, P. E. Saide, Y. Tang, Z. Liu, A. M. da Silva, et al. 2019. “Toward Improving Short-Term Predictions of Fine Particulate Matter over the United States via Assimilation of Satellite Aerosol Optical Depth Retrievals.” Journal of Geophysical Research: Atmospheres 124 (5): 2753–2773. doi:10.1029/2018JD029009.
  • Lee, H. J., R. B. Chatfield, and A. W. Strawa. 2016. “Enhancing the Applicability of Satellite Remote Sensing for PM2.5 Estimation Using MODIS Deep Blue AOD and Land Use Regression in California, United States.” Environmental Science & Technology 50 (12): 6546–6555. doi:10.1021/acs.est.6b01438.
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu. 2013. “The Collection 6 MODIS Aerosol Products over Land and Ocean.” Atmospheric Measurement Techniques 6 (11): 2989–3034. doi:10.5194/amt-6-2989-2013.
  • Li, L., B. Chen, Y. Zhang, Y. Zhao, Y. Xian, X. Guang, H. Zhang, and L. Guo. 2018a. “Retrieval of Daily PM2.5 Concentrations Using Nonlinear Methods: A Case Study of the Beijing–Tianjin–Hebei Region, China.” Remote Sensing 10 (12). doi:10.3390/rs10122006.
  • Li, Q., C. Li, and J. Mao. 2012. “Evaluation of Atmospheric Aerosol Optical Depth Products at Ultraviolet Bands Derived from MODIS Products.” Aerosol Science and Technology 46 (9): 1025–1034. doi:10.1080/02786826.2012.687475.
  • Li, T., H. Shen, C. Zeng, Q. Yuan, and L. Zhang. 2017. “Point-surface Fusion of Station Measurements and Satellite Observations for Mapping PM2.5 Distribution in China: Methods and Assessment.” Atmospheric Environment 152: 477–489. doi:10.1016/j.atmosenv.2017.01.004.
  • Li, X., and X. Zhang. 2019. “Predicting Ground-level PM2.5 Concentrations in the Beijing-Tianjin-Hebei Region: A Hybrid Remote Sensing and Machine Learning Approach.” Environmental Pollution 249: 735–749. doi:10.1016/j.envpol.2019.03.068.
  • Li, Y., Y. Xue, J. Guang, L. She, C. Fan, and G. Chen. 2018b. “Ground-Level PM2.5 Concentration Estimation from Satellite Data in the Beijing Area Using a Specific Particle Swarm Extinction Mass Conversion Algorithm.” Remote Sensing 10 (12). doi:10.3390/rs10121906.
  • Lin, C. Q., G. Liu, A. K. H. Lau, Y. Li, C. C. Li, J. C. H. Fung, and X. Q. Lao. 2018. “High-resolution Satellite Remote Sensing of Provincial PM2.5 Trends in China from 2001 to 2015.” Atmospheric Environment 180: 110–116. doi:10.1016/j.atmosenv.2018.02.045.
  • Liu, J., F. Weng, and Z. Li. 2019. “Satellite-based PM2.5 Estimation Directly from Reflectance at the Top of the Atmosphere Using a Machine Learning Algorithm.” Atmospheric Environment 208: 113–122. doi:10.1016/j.atmosenv.2019.04.002.
  • Luo, N., M. S. Wong, W. Zhao, X. Yan, and F. Xiao. 2015. “Improved Aerosol Retrieval Algorithm Using Landsat Images and Its Application for PM10 Monitoring over Urban Areas.” Atmospheric Research 153: 264–275. doi:10.1016/j.atmosres.2014.08.012.
  • Lv, B., Y. Hu, H. H. Chang, A. G. Russell, J. Cai, B. Xu, and Y. Bai. 2017. “Daily Estimation of Ground-level PM2.5 Concentrations at 4 Km Resolution over Beijing-Tianjin-Hebei by Fusing MODIS AOD and Ground Observations.” Science of the Total Environment 580: 235–244. doi:10.1016/j.scitotenv.2016.12.049.
  • Lv, B., Y. Hu, H. H. Chang, A. G. Russell, and Y. Bai. 2016. “Improving the Accuracy of Daily PM2.5 Distributions Derived from the Fusion of Ground-Level Measurements with Aerosol Optical Depth Observations, a Case Study in North China.” Environmental Science & Technology 50 (9): 4752–4759. doi:10.1021/acs.est.5b05940.
  • Ma, Z., X. Hu, L. Huang, J. Bi, and Y. Liu. 2014. “Estimating Ground-Level PM2.5 In China Using Satellite Remote Sensing.” Environmental Science & Technology 48 (13): 7436–7444. doi:10.1021/es5009399.
  • Ma, Z., X. Hu, M. A. Sayer, R. Levy, Q. Zhang, Y. Xue, S. Tong, J. Bi, L. Huang, and Y. Liu. 2016. “Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013.” Environmental Health Perspectives 124 (2): 184–192. doi:10.1289/ehp.1409481.
  • Mao, X., T. Shen, and X. Feng. 2017. “Prediction of Hourly Ground-level PM2.5 Concentrations 3 Days in Advance Using Neural Networks with Satellite Data in Eastern China.” Atmospheric Pollution Research 8 (6): 1005–1015. doi:10.1016/j.apr.2017.04.002.
  • Martonchik, J. V., D. J. Diner, K. A. Crean, and M. A. Bull. 2002. “Regional Aerosol Retrieval Results from MISR.” IEEE Transactions on Geoscience and Remote Sensing 40 (7): 1520–1531. doi:10.1109/TGRS.2002.801142.
  • Mei, L., V. Rozanov, M. Vountas, J. P. Burrows, and A. Richter. 2018. “XBAER-derived Aerosol Optical Thickness from OLCI/Sentinel-3 Observation.” Atmospheric Chemistry and Physic 18 (4): 2511–2523. doi:10.5194/acp-18-2511-2018.
  • Nabavi, S. O., L. Haimberger, and E. Abbasi. 2019. “Assessing PM2.5 Concentrations in Tehran, Iran, from Space Using MAIAC, Deep Blue, and Dark Target AOD and Machine Learning Algorithms.” Atmospheric Pollution Research 10 (3): 889–903. doi:10.1016/j.apr.2018.12.017.
  • Ngo, N. S., X. Bao, and N. Zhong. 2018. “Local Pollutants Go Global: The Impacts of Intercontinental Air Pollution from China on Air Quality and Morbidity in California.” Environmental Research 165: 473–483. doi:10.1016/j.envres.2018.04.027.
  • Paciorek, C. J., Y. Liu, H. Moreno-Macias, and S. Kondragunta. 2008. “Spatiotemporal Associations between GOES Aerosol Optical Depth Retrievals and Ground-Level PM2.5.” Environmental Science & Technology 42 (15): 5800–5806. doi:10.1021/es703181j.
  • Pang, J., Z. Liu, X. Wang, J. Bresch, J. Ban, D. Chen, and J. Kim. 2018. “Assimilating AOD Retrievals from GOCI and VIIRS to Forecast Surface PM2.5 Episodes over Eastern China.” Atmospheric Environment 179: 288–304. doi:10.1016/j.atmosenv.2018.02.011.
  • Park, S., J. Lee, J. Im, C.-K. Song, J. Kim, S. Lee, R. Park, S.-M. Kim, J. Yoon, and S.-K. Kim. 2019b. “Estimation of Spatially Continuous Particulate Matter Concentrations under All Sky through the Synergistic Use of Satellite-based AOD and Numerical Models”. Science of the Total Environment. (In review).
  • Park, S., M. Shin, J. Im, C. K. Song, M. Choi, J. Kim, S. Lee, et al. 2019a. “Estimation of Ground-level Particulate Matter Concentrations through the Synergistic Use of Satellite Observations and Process-based Models over South Korea.” Atmospheric Chemistry and Physic 19 (2): 1097–1113. doi:10.5194/acp-19-1097-2019.
  • Qin, K., J. Zou, J. Guo, M. Lu, M. Bilal, K. Zhang, F. Ma, and Y. Zhang. 2018. “Estimating PM1 Concentrations from MODIS over Yangtze River Delta of China during 2014–2017.” Atmospheric Environment 195: 149–158. doi:10.1016/j.atmosenv.2018.09.054.
  • Saunders, R. O., J. D. W. Kahl, and J. K. Ghorai. 2014. “Improved Estimation of PM2.5 Using Lagrangian Satellite-measured Aerosol Optical Depth.” Atmospheric Environment 91: 146–153. doi:10.1016/j.atmosenv.2014.03.060.
  • Shen, H., T. Li, Q. Yuan, and L. Zhang. 2018. “Estimating Regional Ground-Level PM2.5 Directly From Satellite Top-Of-Atmosphere Reflectance Using Deep Belief Networks.” Journal of Geophysical Research: Atmospheres 123 (24): 13,875–13,86. doi:10.1029/2018JD028759.
  • Shi, Y., H. C. Ho, Y. Xu, and E. Ng. 2018. “Improving Satellite Aerosol Optical Depth-PM2.5 Correlations Using Land Use Regression with Microscale Geographic Predictors in a High-density Urban Context.” Atmospheric Environment 190: 23–34. doi:10.1016/j.atmosenv.2018.07.021.
  • Silva, R. A., J. J. West, J.-F. Lamarque, D. T. Shindell, W. J. Collins, G. Faluvegi, G. A. Folberth, et al. 2017. “Future Global Mortality from Changes in Air Pollution Attributable to Climate Change.” Nature Climate Change 7 (9): 647–651. doi:10.1038/nclimate3354.
  • Song, W., H. Jia, J. Huang, and Y. Zhang. 2014. “A Satellite-based Geographically Weighted Regression Model for Regional PM2.5 Estimation over the Pearl River Delta Region in China.” Remote Sensing of Environment 154: 1–7. doi:10.1016/j.rse.2014.08.008.
  • Sorek-Hamer, M., A. W. Strawa, R. B. Chatfield, R. Esswein, A. Cohen, and D. M. Broday. 2013. “Improved Retrieval of PM2.5 From Satellite Data Products Using Non-linear Methods.” Environmental Pollution 182: 417–423. doi:10.1016/j.envpol.2013.08.002.
  • Sowden, M., U. Mueller, and D. Blake. 2018. “Review of Surface Particulate Monitoring of Dust Events Using Geostationary Satellite Remote Sensing.” Atmospheric Environment 183: 154–164. doi:10.1016/j.atmosenv.2018.04.020.
  • Stafoggia, M., J. Schwartz, C. Badaloni, T. Bellander, E. Alessandrini, G. Cattani, F. De’Donato, A. Gaeta, G. Leone, and A. Lyapustin. 2017. “Estimation of Daily PM10 Concentrations in Italy (2006–2012) Using Finely Resolved Satellite Data, Land Use Variables and Meteorology.” Environment International 99: 234–244. doi:10.1016/j.envint.2016.11.024.
  • Stafoggia, M., T. Bellander, S. Bucci, M. Davoli, K. de Hoogh, F. De’ Donato, C. Gariazzo, et al. 2019. “Estimation of Daily PM10 and PM2.5 Concentrations in Italy, 2013–2015, Using a Spatiotemporal Land-use Random-forest Model.” Environment International 124 :170–179. doi:10.1016/j.envint.2019.01.016.
  • Stammes, P., and R. Noordhoek. 2002. “OMI Algorithm Theoretical Basis Document Volume III Version 2.0.” https://eospso.gsfc.nasa.gov/sites/default/files/atbd/ATBD-OMI-03.pdf.
  • Stoffelen, A. 1998. “Toward the True Near-surface Wind Speed: Error Modeling and Calibration Using Triple Collocation.” Journal of Geophysical Research: Oceans 103 (C4): 7755–7766. doi:10.1029/97JC03180.
  • Sun, Y., Q. Zeng, B. Geng, X. Lin, B. Sude, and L. Chen. 2019. “Deep Learning Architecture for Estimating Hourly Ground-Level PM2.5 Using Satellite Remote Sensing.” IEEE Geoscience and Remote Sensing Letters 16 (9): 1343–1347. doi:10.1109/LGRS.2019.2900270.
  • Tian, J., and D. Chen. 2010. “A Semi-empirical Model for Predicting Hourly Ground-level Fine Particulate Matter (PM2.5) Concentration in Southern Ontario from Satellite Remote Sensing and Ground-based Meteorological Measurements.” Remote Sensing of Environment 114 (2): 221–229. doi:10.1016/j.rse.2009.09.011.
  • Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben. 2002. “A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements.” Journal of the Atmospheric Sciences 59 (3): 398–413. doi:10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2.
  • van Donkelaar, A., R. V. Martin, C. Li, and R. T. Burnett. 2019. “Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors.” Environmental Science & Technology 53 (5): 2595–2611. doi:10.1021/acs.est.8b06392.
  • van Donkelaar, A., R. V. Martin, M. Brauer, N. Christina Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. “Global Estimates of Fine Particulate Matter Using a Combined Geophysical-statistical Method with Information from Satellites, Models, and Monitors.” Environmental Science & Technology 50 (7): 3762–3772. doi:10.1021/acs.est.5b05833.
  • van Donkelaar, A., R. V. Martin, R. J. D. Spurr, and R. T. Burnett. 2015. “High-Resolution Satellite-Derived PM2.5 From Optimal Estimation and Geographically Weighted Regression over North America.” Environmental Science & Technology 49 (17): 10482–10491. doi:10.1021/acs.est.5b02076.
  • Vellingiri, K., K.-H. Kim, J.-M. Lim, J.-H. Lee, C.-J. Ma, B.-H. Jeon, J.-R. Sohn, P. Kumar, and C.-H. Kang. 2016. “Identification of Nitrogen Dioxide and Ozone Source Regions for an Urban Area in Korea Using Back Trajectory Analysis.” Atmospheric Research 176–177: 212–221. doi:10.1016/j.atmosres.2016.02.022.
  • Wang, W., F. Mao, B. Zou, J. Guo, L. Wu, Z. Pan, and L. Zang. 2019. “Two-stage Model for Estimating the Spatiotemporal Distribution of Hourly PM1.0 Concentrations over Central and East China.” Science of the Total Environment 675: 658–666. doi:10.1016/j.scitotenv.2019.04.134.
  • Wang, Z., L. Chen, J. Tao, Y. Zhang, and L. Su. 2010. “Satellite-based Estimation of Regional Particulate Matter (PM) in Beijing Using vertical-and-RH Correcting Method.” Remote Sensing of Environment 114 (1): 50–63. doi:10.1016/j.rse.2009.08.009.
  • World Health Organization. “Ambient (Outdoor) Air Quality and Health.” Accessed 02 August 2019. https://www.who.int/news-room/fact-sheets/detail/ambient-outdoor-air-quality-and-health
  • Xiao, L., Y. Lang, and G. Christakos. 2018. “High-resolution Spatiotemporal Mapping of PM2.5 Concentrations at Mainland China Using a Combined BME-GWR Technique.” Atmospheric Environment 173: 295–305. doi:10.1016/j.atmosenv.2017.10.062.
  • Xiao, Q., Y. Wang, H. H. Chang, X. Meng, G. Geng, A. Lyapustin, and Y. Liu. 2017. “Full-coverage High-resolution Daily PM2.5 Estimation Using MAIAC AOD in the Yangtze River Delta of China.” Remote Sensing of Environment 199: 437–446. doi:10.1016/j.rse.2017.07.023.
  • Xie, Y., Y. Wang, K. Zhang, W. Dong, B. Lv, and Y. Bai. 2015. “Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 Km Resolution MODIS AOD.” Environmental Science & Technology 49 (20): 12280–12288. doi:10.1021/acs.est.5b01413.
  • Xu, J.-W., R. V. Martin, A. Van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, and L. Huang. 2015. “Estimating Ground-level PM2.5 In Eastern China Using Aerosol Optical Depth Determined from the GOCI Satellite Instrument.” Atmospheric Chemistry and Physics 15 (22): 13133–13144. doi:10.5194/acp-15-13133-2015.
  • Xu, Y., H. C. Ho, M. S. Wong, C. Deng, Y. Shi, T.-C. Chan, and A. Knudby. 2018. “Evaluation of Machine Learning Techniques with Multiple Remote Sensing Datasets in Estimating Monthly Concentrations of Ground-level PM2. 5.” Environmental Pollution 242: 1417–1426. doi:10.1016/j.envpol.2018.08.029.
  • Yang, L., H. Xu, and Z. Jin. 2019. “Estimating Ground-level PM2.5 Over a Coastal Region of China Using Satellite AOD and a Combined Model.” Journal of Cleaner Production 227: 472–482. doi:10.1016/j.jclepro.2019.04.231.
  • Yang, X., Y. Zheng, G. Geng, H. Liu, H. Man, Z. Lv, K. He, and K. de Hoogh. 2017. “Development of PM2.5 And NO2 Models in a LUR Framework Incorporating Satellite Remote Sensing and Air Quality Model Data in Pearl River Delta Region, China.” Environmental Pollution 226: 143–153. doi:10.1016/j.envpol.2017.03.079.
  • Yao, F., J. Wu, W. Li, and J. Peng. 2019. “A Spatially Structured Adaptive Two-stage Model for Retrieving Ground-level PM2.5 Concentrations from VIIRS AOD in China.” ISPRS Journal of Photogrammetry and Remote Sensing 151: 263–276. doi:10.1016/j.isprsjprs.2019.03.011.
  • Yeganeh, B., M. G. Hewson, S. Clifford, L. D. Knibbs, and L. Morawska. 2017. “A Satellite-based Model for Estimating PM2.5 Concentration in A Sparsely Populated Environment Using Soft Computing Techniques.” Environmental Modelling & Software 88: 84–92. doi:10.1016/j.envsoft.2016.11.017.
  • You, W., Z. Zang, L. Zhang, M. Zhang, X. Pan, and Y. Li. 2016. “A Nonlinear Model for Estimating Ground-level PM10 Concentration in Xi’an Using MODIS Aerosol Optical Depth Retrieval.” Atmospheric Research 168: 169–179. doi:10.1016/j.atmosres.2015.09.008.
  • Young, S. A., M. A. Vaughan, R. E. Kuehn, and D. M. Winker. 2012. “The Retrieval of Profiles of Particulate Extinction from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Data: Uncertainty and Error Sensitivity Analyses.” Journal of Atmospheric and Oceanic Technology 30 (3): 395–428. doi:10.1175/JTECH-D-12-00046.1.
  • Zang, L., F. Mao, J. Guo, W. Gong, W. Wang, and Z. Pan. 2018. “Estimating Hourly PM1 Concentrations from Himawari-8 Aerosol Optical Depth in China.” Environmental Pollution 241: 654–663. doi:10.1016/j.envpol.2018.05.100.
  • Zang, L., F. Mao, J. Guo, W. Wang, Z. Pan, H. Shen, B. Zhu, and Z. Wang. 2019. “Estimation of Spatiotemporal PM1.0 Distributions in China by Combining PM2.5 Observations with Satellite Aerosol Optical Depth.” Science of the Total Environment 658: 1256–1264. doi:10.1016/j.scitotenv.2018.12.297.
  • Zhai, L., S. Li, B. Zou, H. Sang, X. Fang, and S. Xu. 2018. “An Improved Geographically Weighted Regression Model for PM2.5 Concentration Estimation in Large Areas.” Atmospheric Environment 181: 145–154. doi:10.1016/j.atmosenv.2018.03.017.
  • Zhang, R., B. Di, Y. Luo, X. Deng, M. L. Grieneisen, Z. Wang, G. Yao, and Y. Zhan. 2018a. “A Nonparametric Approach to Filling Gaps in Satellite-retrieved Aerosol Optical Depth for Estimating Ambient PM2.5 Levels.” Environmental Pollution 243: 998–1007. doi:10.1016/j.envpol.2018.09.052.
  • Zhang, R., G. Wang, S. Guo, M. L. Zamora, Q. Ying, Y. Lin, W. Wang, M. Hu, and Y. Wang. 2015. “Formation of Urban Fine Particulate Matter.” Chemical Reviews 115 (10): 3803–3855. doi:10.1021/acs.chemrev.5b00067.
  • Zhang, T., L. Zang, Y. Wan, W. Wang, and Y. Zhang. 2019. “Ground-level PM2.5 Estimation over Urban Agglomerations in China with High Spatiotemporal Resolution Based on Himawari-8.” Science of the Total Environment 676: 535–544. doi:10.1016/j.scitotenv.2019.04.299.
  • Zhang, T., W. Gong, W. Wang, Y. Ji, Z. Zhu, and Y. Huang. 2016. “Ground Level PM2.5 Estimates over China Using Satellite-Based Geographically Weighted Regression (GWR) Models are Improved by Including NO2 and Enhanced Vegetation Index (EVI).” International Journal of Environmental Research and Public Health 13 (12). doi:10.3390/ijerph13121215.
  • Zhang, T., Z. Zhu, W. Gong, Z. Zhu, K. Sun, L. Wang, Y. Huang, et al. 2018b. “Estimation of Ultrahigh Resolution PM2.5 Concentrations in Urban Areas Using 160 M Gaofen-1 AOD Retrievals.” Remote Sensing of Environment 216 :91–104. doi:10.1016/j.rse.2018.06.030.
  • Zhang, X., Y. Chu, Y. Wang, and K. Zhang. 2018c. “Predicting Daily PM2.5 Concentrations in Texas Using High-resolution Satellite Aerosol Optical Depth.” Science of the Total Environment 631–632: 904–911. doi:10.1016/j.scitotenv.2018.02.255.
  • Zhang, Y., and Z. Li. 2015. “Remote Sensing of Atmospheric Fine Particulate Matter (PM2.5) Mass Concentration near the Ground from Satellite Observation.” Remote Sensing of Environment 160: 252–262. doi:10.1016/j.rse.2015.02.005.
  • Zhao, Y., B. Huang, A. Marinoni, and P. Gamba. 2018. “High Spatiotemporal Resolution PM2.5 Concentration Estimation with Satellite and Ground Observations: A Case Study in New York City.” Paper presented at the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, March 12–14.
  • Zheng, Y., Q. Zhang, Y. Liu, G. Geng, and K. He. 2016. “Estimating Ground-level PM2.5 Concentrations over Three Megalopolises in China Using Satellite-derived Aerosol Optical Depth Measurements.” Atmospheric Environment 124: 232–242. doi:10.1016/j.atmosenv.2015.06.046.
  • Zou, B., J. Chen, L. Zhai, X. Fang, and Z. Zheng. 2017. “Satellite Based Mapping of Ground PM2.5 Concentration Using Generalized Additive Modeling.” Remote Sensing 9 (1). doi:10.3390/rs9010001.
  • Zou, B., Q. Pu, M. Bilal, Q. Weng, L. Zhai, and J. E. Nichol. 2016. “High-resolution Satellite Mapping of Fine Particulates Based on Geographically Weighted Regression.” IEEE Geoscience and Remote Sensing Letters 13 (4): 495–499. doi:10.1109/LGRS.2016.2520480.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.