1,164
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exact Voronoi diagram for topographic spatial analysis

ORCID Icon, , &
Article: 2171703 | Received 02 Oct 2022, Accepted 18 Jan 2023, Published online: 01 Feb 2023

References

  • Adikusuma, Y. Y., Z. Fang, and Y. He. 2020. “Fast Construction of Discrete Geodesic Graphs.” ACM Transactions on Graphics 39 (2): 1–19. Article 14. doi:10.1145/3144567.
  • Aronov, B., M. Berg, and S. Thite 2008. The Complexity of Bisectors and Voronoi Diagrams on Realistic Terrains. The 16th Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. doi:10.1007/978-3-540-87744-8_9.
  • Bobenko, A. I., and B. A. Springborn. 2007. “A Discrete Laplace–Beltrami Operator for Simplicial Surfaces.” Discrete & Computational Geometry 38 (4): 740–756. doi:10.1007/s00454-007-9006-1.
  • Bose, P., A. Maheshwari, C. Shu, and S. Wuhrer. 2011. “A Survey of Geodesic Paths on 3D Surfaces.” Computational Geometry 44 (9): 486–498. doi:https://doi.org/10.1016/j.comgeo.2011.05.006.
  • Chen, J. 1999. “A Raster-Based Method for Computing Voronoi Diagrams of Spatial Objects Using Dynamic Distance Transformation.” International Journal of Geographical Information Science 13 (3): 209–225. doi:10.1080/136588199241328.
  • Cheng, S. -W., T. K. Dey, and J. Shewchuk. 2012. Delaunay Mesh Generation. New York: Chapman & Hall/CRC.
  • Chen, J., and Y. Han 1990. Shortest Paths on a Polyhedron. Proceedings of the sixth annual symposium on Computational geometry. Association for Computing Machinery, Berkley, California, USA, 360–369.
  • Chen, Y., and Q. Zhou. 2013. “A Scale-Adaptive DEM for Multi-Scale Terrain Analysis.” International Journal of Geographical Information Science 27 (7): 1329–1348. doi:10.1080/13658816.2012.739690.
  • Crane, K., M. Livesu, E. Puppo, and Y. Qin 2020. A Survey of Algorithms for Geodesic Paths and Distances. https://ui.adsabs.harvard.edu/abs/2020arXiv200710430C.
  • Crane, K., C. Weischedel, and M. Wardetzky. 2013. “Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow.” ACM Transactions on Graphics 32 (5): 152. doi:10.1145/2516971.2516977.
  • Du, Q., V. Faber, and M. Gunzburger. 1999. “Centroidal Voronoi Tessellations: Applications and Algorithms.” SIAM review 41 (4): 637–676. doi:10.1137/S0036144599352836.
  • Du, Q., M. Gunzburger, and Lili Ju. 2010. “Advances in Studies and Applications of Centroidal Voronoi Tessellations.” Numerical Mathematics: Theory, Methods and Applications 3 (2): 119–142. doi:10.4208/nmtma.2010.32s.1.
  • Dyn, N., D. Levin, and S. Rippa. 1990. “Data Dependent Triangulations for Piecewise Linear Interpolation.” Ima Journal of Numerical Analysis 10 (1): 137–154. doi:10.1093/imanum/10.1.137.
  • Elvidge, A. D., I. Sandu, N. Wedi, S. B. Vosper, A. Zadra, S. Boussetta, F. Bouyssel, A. van Niekerk, M. A. Tolstykh, and M. Ujiie. 2019. “Uncertainty in the Representation of Orography in Weather and Climate Models and Implications for Parameterized Drag.” Journal of Advances in Modeling Earth Systems 11 (8): 2567–2585. doi:10.1029/2019ms001661.
  • Gersho, A. 1979. “Asymptotically Optimal Block Quantization.” IEEE Transactions on Information Theory 25 (4): 373–380. doi:10.1109/TIT.1979.1056067.
  • Hafting, T., M. Fyhn, S. Molden, M. B. Moser, and E. I. Moser. 2005. “Microstructure of a Spatial Map in the Entorhinal Cortex.” Nature 436 (7052): 801–806. doi:10.1038/nature03721.
  • Herholz, P., and M. Alexa. 2018. “Factor Once: Reusing Cholesky Factorizations on Sub-Meshes.” ACM Transactions on Graphics 37 (6): 1–9. Article 230. doi:10.1145/3272127.3275107.
  • Herholz, P., F. Haase, and M. Alexa. 2017. “Diffusion Diagrams: Voronoi Cells and Centroids from Diffusion.” Computer Graphics Forum 36 (2): 163–175. doi:https://doi.org/10.1111/cgf.13116.
  • Hu, H., X. Liu, and P. Hu. 2014. “Voronoi Diagram Generation on the Ellipsoidal Earth.” Computers & Geosciences 73: 81–87. doi:10.1016/j.cageo.2014.08.011.
  • Jacobson, A., and D. Panozzo 2018. Libigl: A Simple C++ Geometry Processing Library.
  • Kanai, T., and H. Suzuki. 2001. “Approximate Shortest Path on a Polyhedral Surface and Its Applications.” Computer-Aided Design 33 (11): 801–811. doi:10.1016/S0010-4485(01)00097-5.
  • Kimmel, R., and J. A. Sethian. 1998. “Computing Geodesic Paths on Manifolds.” Proceedings of the National Academy of Sciences 95 (15): 8431–8435. doi:10.1073/pnas.95.15.8431.
  • Lanthier, M. A. 1999. Shortest path problems on polyhedral surfaces. Ph.D, Carleton University
  • Liu, C. H. 2018. “A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram of Points in a Simple Polygon.” Algorithmica 82 (4): 915–937. doi:10.1007/s00453-019-00624-2.
  • Liu, Y. -J., Z. Chen, and K. Tang 2011. Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1502–1517, doi: 10.1109/TPAMI.2010.221.
  • Liu, Y. J., D. Fan, C. X. Xu, and Y. He. 2017. “Constructing Intrinsic Delaunay Triangulations from the Dual of Geodesic Voronoi Diagrams.” ACM Transactions on Graphics 36 (2): 43–57. doi:10.1145/2999532.
  • Liu, Y., M. F. Goodchild, Q. Guo, Y. Tian, and L. Wu. 2008. “Towards a General Field Model and Its Order in GIS.” International Journal of Geographical Information Science 22 (6): 623–643. doi:10.1080/13658810701587727.
  • Liu, Y. -J., Q. -Y. Zhou, and S. -M. Hu. 2007. “Handling Degenerate Cases in Exact Geodesic Computation on Triangle Meshes.” The Visual Computer 23 (9–11): 661–668. doi:10.1007/s00371-007-0136-5.
  • Mitchell, J. S. B., D. M. Mount, and C. H. Papadimitriou. 1987. “The Discrete Geodesic Problem.” Siam Journal on Computing 16 (4): 647–668. doi:10.1137/0216045.
  • Nazzaro, G., E. Puppo, and F. Pellacini. 2021. “geoTangle: Interactive Design of Geodesic Tangle Patterns on Surfaces.” ACM Transactions on Graphics 41 (2): 1–17. Article 12. doi:10.1145/3487909.
  • Okabe, A., B. Boots, K. Sugihara, and S. N. Chiu. 2000. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. 2 ed. Chichester: JOHN WILEY & SONS.
  • Papadopoulou, E., and D. T. Lee. 1998. “A New Approach for the Geodesic Voronoi Diagram of Points in a Simple Polygon and Other Restricted Polygonal Domains.” Algorithmica 20 (4): 319–352. doi:10.1007/PL00009199.
  • Peyré, G., and L. D. Cohen. 2006. “Geodesic Remeshing Using Front Propagation.” International Journal of Computer Vision 69 (1): 145–156. doi:10.1007/s11263-006-6859-3.
  • Qin, Y., X. Han, H. Yu, Y. Yu, and J. Zhang. 2016. “Fast and Exact Discrete Geodesic Computation Based on Triangle-Oriented Wavefront Propagation.” ACM Transactions on Graphics 35 (4): 125. doi:10.1145/2897824.2925930.
  • Qin, Y., H. Yu, and J. Zhang. 2017. “Fast and Memory-Efficient Voronoi Diagram Construction on Triangle Meshes.” Computer Graphics Forum 36 (5): 93–104. doi:https://doi.org/10.1111/cgf.13248.
  • Rivin, S. 1994. “Euclidean Structures on Simplicial Surfaces and Hyperbolic Volume.” Annals of Mathematics 139 (3): 553–580. doi:10.2307/2118572.
  • Shakhnarovich, G., T. Darrell, and P. Indyk. 2008. “Nearest-Neighbor Methods in Learning and Vision.” IEEE Transactions on Neural Networks 19 (2): 377–377. doi:10.1109/TNN.2008.917504
  • Sharir, M., and A. Schorr. 1986. “On Shortest Paths in Polyhedral Spaces.” Siam Journal on Computing 15 (1): 193–215. doi:10.1137/0215014.
  • Sharp, N., Y. Soliman, and K. Crane. 2019. “The Vector Heat Method.” ACM transactions on graphics 38 (3): 24.21–24.19. doi:10.1145/3243651
  • Smith, M. W. 2014. “Roughness in the Earth Sciences.” Earth-Science Reviews 136: 202–225. doi:10.1016/j.earscirev.2014.05.016.
  • Stewart, C. W., and R. Ree. 2010. “A Voronoi Diagram Based Population Model for Social Species of Wildlife.” Ecological modelling 221 (12): 1554–1568. doi:10.1016/j.ecolmodel.2010.03.019.
  • Surazhsky, V., T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe. 2005. “Fast Exact and Approximate Geodesics on Meshes.” ACM Transactions on Graphics 24 (3): 553–560. doi:10.1145/1073204.1073228.
  • Wang, X., Z. Fang, J. Wu, S. Q. Xin, and Y. He. 2017. “Discrete Geodesic Graph (DGG) for Computing Geodesic Distances on Polyhedral Surfaces.” Computer Aided Geometric Design 52: 262–284. doi:10.1016/j.cagd.2017.03.010.
  • Xiang, Y., S. Q. Xin, and H. Ying. 2014. “Parallel Chen-Han (PCH) Algorithm for Discrete Geodesics.” ACM Transactions on Graphics 33: 1–11. doi:10.1145/2534161.
  • Xin, S. Q., and G. J. Wang. 2009. “Improving Chen and Han’s Algorithm on the Discrete Geodesic Problem.” ACM Transactions on Graphics 28 (4): 1–8. doi:10.1145/1559755.1559761.
  • Xin, S., W. Wang, Y. He, Y. Zhou, S. Chen, C. Tu, and Z. Shu. 2018. “Lightweight Preprocessing and Fast Query of Geodesic Distance via Proximity Graph.” Computer-Aided Design 102: 128–138. doi:10.1016/j.cad.2018.04.021.
  • Xu, C., Y. Liu, S. Qian, J. Li, and H. Ying. 2015. “Polyline-Sourced Geodesic Voronoi Diagrams on Triangle Meshes.” Computer Graphics Forum 33 (7): 161–170. doi:10.1111/cgf.12484.
  • Xu, C., T. Y. Wang, Y. J. Liu, L. Liu, and Y. He. 2015. “Fast Wavefront Propagation (FWP) for Computing Exact Geodesic Distances on Meshes.” IEEE Transactions on Visualization & Computer Graphics 21 (7): 822. doi:10.1109/TVCG.2015.2407404.
  • Ye, Z., R. Yi, M. Yu, Y. J. Liu, and Y. He. 2019. “Geodesic Centroidal Voronoi Tessellations: Theories.” Algorithms and Applications. doi:10.48550/arXiv.1907.00523.
  • Ying, X., X. Wang, and Y. He. 2013. “Saddle Vertex Graph (SVG): A Novel Solution to the Discrete Geodesic Problem.” ACM Transactions on Graphics 32 (6): 1–12. doi:10.1145/2508363.2508379.
  • Zayer, R., D. Mlakar, M. Steinberger, and H. -P. Seidel. 2018. “Layered Fields for Natural Tessellations on Surfaces.” ACM Transactions on Graphics 37 (6): 1–15. Article 264. doi:10.1145/3272127.3275072.