1,371
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accuracy evaluation and effect factor analysis of GEDI aboveground biomass product for temperate forests in the conterminous United States

, , , , &
Article: 2292374 | Received 18 Aug 2023, Accepted 03 Dec 2023, Published online: 12 Dec 2023

References

  • Adam, M., M. Urbazaev, C. Dubois, and C. Schmullius. 2020. “Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters.” Remote Sensing 12 (23): 3948. https://doi.org/10.3390/rs12233948.
  • Avitabile, V., M. Herold, G. B. M. Heuvelink, S. L. Lewis, O. L. Phillips, G. P. Asner, J. Armston, et al. 2016. “An integrated pan-tropical biomass map using multiple reference datasets.” Global Change Biology 22 (4): 1406–23. https://doi.org/10.1111/gcb.13139.
  • Baccini, A., S. J. Goetz, W. S. Walker, N. T. Laporte, M. Sun, D. Sulla-Menashe, J. Hackler, et al. 2012. “Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps.” Nature Climate Change 2 (3): 182–185. https://doi.org/10.1038/nclimate1354.
  • Basist, A., N. Grody, T. Peterson, and C. Williams. 1998. “Using the Special Sensor Microwave/Imager to Monitor Land Surface Temperatures, Wetness, and Snow Cover.” Journal of Applied Meteorology 37:888–911. https://doi.org/10.1175/1520-0450.
  • Blackard, J. A., M. V. Finco, E. H. Helmer, G. R. Holden, M. L. Hoppus, D. M. Jacobs, A. J. Lister, et al. 2008. “Mapping U.S. Forest Biomass Using Nationwide Forest Inventory Data and Moderate Resolution Information.” Remote Sensing of Environment 112 (4): 1658–1677. https://doi.org/10.1016/j.rse.2007.08.021.
  • Bruening, J. M., R. Fischer, F. J. Bohn, J. Armston, A. H. Armstrong, N. Knapp, H. Tang, A. Huth, and R. Dubayah. 2021. “Challenges to Aboveground Biomass Prediction from Waveform Lidar.” Environmental Research Letters 16 (12): 125013. https://doi.org/10.1088/1748-9326/ac3cec.
  • Campbell, M. J., P. E. Dennison, K. L. Kerr, S. C. Brewer, and W. R. L. Anderegg. 2021. “Scaled Biomass Estimation in Woodland Ecosystems: Testing the Individual and Combined Capacities of Satellite Multispectral and Lidar Data.” Remote Sensing of Environment 262:112511. https://doi.org/10.1016/j.rse.2021.112511.
  • Cao, L., N. C. Coops, T. Hermosilla, J. Innes, J. Dai, and G. She. 2014. “Using Small-Footprint Discrete and Full-Waveform Airborne LiDar Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests.” Remote Sensing 6 (8): 7110–7135. https://doi.org/10.3390/rs6087110.
  • Chen, L., C. Ren, G. Bao, B. Zhang, Z. Wang, M. Liu, W. Man, and J. Liu. 2022. “Improved Object-Based Estimation of Forest Aboveground Biomass by Integrating LiDar Data from GEDI and ICESat-2 with Multi-Sensor Images in a Heterogeneous Mountainous Region.” Remote Sensing 14 (12): 2743. https://doi.org/10.3390/rs14122743.
  • Coops, N. C., P. Tompalski, T. R. H. Goodbody, M. Queinnec, J. E. Luther, D. K. Bolton, J. C. White, M. A. Wulder, O. R. van Lier, and T. Hermosilla. 2021. “Modelling Lidar-Derived Estimates of Forest Attributes Over Space and Time: A Review of Approaches and Future Trends.” Remote Sensing of Environment 260:112477. https://doi.org/10.1016/j.rse.2021.112477.
  • David, C. C., S. H. Linda, and C. J. Jennifer. 2014. “Updated Generalized Biomass Equations for North American Tree Species.” Forestry: An International Journal of Forest Research 87:129–151. https://doi.org/10.1093/forestry/cpt053.
  • Dorado-Roda, I., A. Pascual, S. Godinho, C. A. Silva, B. Botequim, P. Rodriguez-Gonzalvez, E. Gonzalez-Ferreiro, and J. Guerra-Hernandez. 2021. “Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests.” Remote Sensing 13 (12): 2279. https://doi.org/10.3390/rs13122279.
  • Dubayah, R., J. Armston, S. P. Healey, J. M. Bruening, P. L. Patterson, J. R. Kellner, L. Duncanson, et al. 2022. “GEDI Launches a New Era of Biomass Inference from Space.” Environmental Research Letters 17 (9): 095001. https://doi.org/10.1088/1748-9326/ac8694.
  • Dubayah, R., J. B. Blair, S. Goetz, L. Fatoyinbo, M. Hansen, S. Healey, M. Hofton, et al. 2020. “The Global Ecosystem Dynamics Investigation: High-Resolution Laser Ranging of the Earth’s Forests and Topography.” Science of Remote Sensing 1:100002. https://doi.org/10.1016/j.srs.2020.100002.
  • Duncanson, L., J. Armston, M. Disney, V. Avitabile, N. Barbier, K. Calders, S. Carter, et al. 2019. “The Importance of Consistent Global Forest Aboveground Biomass Product Validation.” Surveys in Geophysics 40 (4): 979–999. https://doi.org/10.1007/s10712-019-09538-8.
  • Duncanson, L., J. R. Kellner, J. Armston, R. Dubayah, D. M. Minor, S. Hancock, S. P. Healey, et al. 2022. “Aboveground Biomass Density Models for Nasa’s Global Ecosystem Dynamics Investigation (GEDI) Lidar Mission.” Remote Sensing of Environment 270:112845. https://doi.org/10.1016/j.rse.2021.112845.
  • Duncanson, L., A. Neuenschwander, S. Hancock, N. Thomas, T. Fatoyinbo, M. Simard, C. A. Silva, et al. 2020. “Biomass Estimation from Simulated GEDI, ICESat-2 and NISAR Across Environmental Gradients in Sonoma County, California.” Remote Sensing of Environment 242:111779. https://doi.org/10.1016/j.rse.2020.111779.
  • Entekhabi, D., R. Reichle, R. Koster, and W. Crow. 2010. “Performance Metrics for Soil Moisture Retrievals and Application Requirements.” Journal of Hydrometeorology 11:832–840. https://doi.org/10.1175/2010JHM1223.1.
  • Geladi, P., and B. R. Kowalski. 1986. “Partial least-squares regression: a tutorial.” Analytica chimica acta 185:1–17. https://doi.org/10.1016/0003-2670(86)80028-9.
  • Gobakken, T., E. Næsset, R. Nelson, O. M. Bollandsås, T. G. Gregoire, G. Ståhl, S. Holm, H. O. Ørka, and R. Astrup. 2012. “Estimating Biomass in Hedmark County, Norway Using National Forest Inventory Field Plots and Airborne Laser Scanning.” Remote Sensing of Environment 123:443–456. https://doi.org/10.1016/j.rse.2012.01.025.
  • Gough, C. M., J. W. Atkins, R. T. Fahey, and B. S. Hardiman. 2019. “High Rates of Primary Production in Structurally Complex Forests.” Ecology 100 (10): e02864. https://doi.org/10.1002/ecy.2864.
  • Hancock, S., J. Armston, M. Hofton, X. Sun, H. Tang, L. I. Duncanson, J. R. Kellner, and R. Dubayah. 2019. “The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions.” Earth & Space Science 6 (2): 294–310. https://doi.org/10.1029/2018EA000506.
  • Herold, M., S. Carter, V. Avitabile, A. B. Espejo, I. Jonckheere, R. Lucas, R. E. McRoberts, et al. 2019. “The Role and Need for Space-Based Forest Biomass-Related Measurements in Environmental Management and Policy.” Surveys in Geophysics 40 (4): 757–778. https://doi.org/10.1007/s10712-019-09510-6.
  • Hoffrén, R., M. T. Lamelas, J. de la Riva, D. Domingo, A. L. Montealegre, A. García-Martín, and S. Revilla. 2023. “Assessing GEDI-NASA System for Forest Fuels Classification Using Machine Learning Techniques.” International Journal of Applied Earth Observation and Geoinformation 116:103175. https://doi.org/10.1016/j.jag.2022.103175.
  • Huang, W., K. Dolan, A. Swatantran, K. Johnson, H. Tang, J. O’Neil-Dunne, R. Dubayah, and G. Hurtt. 2019. “High-Resolution Mapping of Aboveground Biomass for Forest Carbon Monitoring System in the Tri-State Region of Maryland, Pennsylvania and Delaware, USA.” Environmental Research Letters 14 (9): 095002. https://doi.org/10.1088/1748-9326/ab2917.
  • Hu, T., Y. Su, B. L. Xue, J. Liu, X. Zhao, J. Fang, and Q. Guo. 2016. “Mapping Global Forest Aboveground Biomass with Spaceborne LiDar, Optical Imagery, and Forest Inventory Data.” Remote Sensing 8 (7): 565. https://doi.org/10.3390/rs8070565.
  • Johnson, J., and J. LeBreton. 2004. “History and Use of Relative Importance Indices in Organizational Research.” Organizational Research Methods 7:238–257. https://doi.org/10.1177/1094428104266510.
  • Kanmegne Tamga, D., H. Latifi, T. Ullmann, R. Baumhauer, J. Bayala, and M. Thiel. 2023. “Estimation of Aboveground Biomass in Agroforestry Systems Over Three Climatic Regions in West Africa Using Sentinel-1, Sentinel-2, ALOS, and GEDI Data.” Sensors 23 (1). https://doi.org/10.3390/s23010349.
  • Kellner, J. R., J. Armston, and L. Duncanson. 2023. “Algorithm Theoretical Basis Document for GEDI Footprint Aboveground Biomass Density.” Earth & Space Science 10:e2022EA002516. https://doi.org/10.1029/2022EA002516.
  • Khati, U., M. Lavalle, and G. Singh. 2021. “The Role of Time-Series L-Band SAR and GEDI in Mapping Sub-Tropical Above-Ground Biomass.” Frontiers in Earth Science 9. https://doi.org/10.3389/feart.2021.752254.
  • Knapp, N., A. Huth, and R. Fischer. 2021. “Tree Crowns Cause Border Effects in Area-Based Biomass Estimations from Remote Sensing.” Remote Sensing 13 (8): 1592. https://doi.org/10.3390/rs1308159.
  • Labrière, N., S. J. Davies, M. I. Disney, L. I. Duncanson, M. Herold, S. L. Lewis, O. L. Phillips, et al. 2022. “Toward a Forest Biomass Reference Measurement System for Remote Sensing Applications.” Global Change Biology 29. https://doi.org/10.1111/gcb.16497.
  • Liang, M., L. Duncanson, J. A. Silva, and F. Sedano. 2023. “Quantifying Aboveground Biomass Dynamics from Charcoal Degradation in Mozambique Using GEDI Lidar and Landsat.” Remote Sensing of Environment 284:113367. https://doi.org/10.1016/j.rse.2022.113367.
  • Li, L., Q. Guo, S. Tao, M. Kelly, and G. Xu. 2015. “Lidar with Multi-Temporal MODIS Provide a Means to Upscale Predictions of Forest Biomass.” Isprs Journal of Photogrammetry & Remote Sensing 102:198–208. https://doi.org/10.1016/j.isprsjprs.2015.02.007.
  • Liu, A., X. Cheng, and Z. Chen. 2021. “Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals.” Remote Sensing of Environment 264:112571. https://doi.org/10.1016/j.rse.2021.112571.
  • Liu, Y. Y., A. I. J. M. van Dijk, R. A. M. de Jeu, J. G. Canadell, M. F. McCabe, J. P. Evans, and G. Wang. 2015. “Recent Reversal in Loss of Global Terrestrial Biomass.” Nature Climate Change 5 (5): 470–474. https://doi.org/10.1038/nclimate2581.
  • Luckman, A., J. Baker, M. Honzák, and R. Lucas. 1998. “Tropical Forest Biomass Density Estimation Using JERS-1 SAR: Seasonal Variation, Confidence Limits, and Application to Image Mosaics.” Remote Sensing of Environment 63:126–139. https://doi.org/10.1016/S0034-4257(97)00133-8.
  • Ma, H., X. Li, J. Zeng, X. Zhang, J. Dong, N. Chen, L. Fan, et al. 2023. “An Assessment of L-Band Surface Soil Moisture Products from SMOS and SMAP in the Tropical Areas.” Remote Sensing of Environment 284:113344. https://doi.org/10.1016/j.rse.2022.113344.
  • Ma, H., J. Zeng, N. Chen, X. Zhang, M. Cosh, and W. Wang. 2019. “Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations.” Remote Sensing of Environment 231:111215. https://doi.org/10.1016/j.rse.2019.111215.
  • Montesano, P. M., J. Rosette, G. Sun, P. North, R. F. Nelson, R. O. Dubayah, K. J. Ranson, and V. Kharuk. 2015. “The Uncertainty of Biomass Estimates from Modeled ICESat-2 Returns Across a Boreal Forest Gradient.” Remote Sensing of Environment 158:95–109. https://doi.org/10.1016/j.rse.2014.10.029.
  • Murphy, B. A., J. A. May, B. J. Butterworth, C. G. Andresen, and A. R. Desai. 2022. “Unraveling Forest Complexity: Resource Use Efficiency, Disturbance, and the Structure-Function Relationship.” Journal of Geophysical Research: Biogeosciences 127 (6): e2021JG006748. https://doi.org/10.1029/2021JG006748.
  • Nagy, R. C., J. K. Balch, E. K. Bissell, M. E. Cattau, N. F. Glenn, B. S. Halpern, N. Ilangakoon, et al. 2021. “Harnessing the NEON Data Revolution to Advance Open Environmental Science with a Diverse and Data-Capable Community.” Ecosphere 12 (12): e03833. https://doi.org/10.1002/ecs2.3833.
  • Nelson, R., H. Margolis, P. Montesano, G. Sun, B. Cook, L. Corp, H.-E. Andersen, et al. 2017. “Lidar-Based Estimates of Aboveground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations.” Remote Sensing of Environment 188:127–140. https://doi.org/10.1016/j.rse.2016.10.038.
  • NEON (National Ecological Observatory Network). “Discrete return LiDAR point cloud (DP1.30003.001).” RELEASE-2023. Dataset accessed from on August 11, 2023. https://data.neonscience.org/data-products/DP1.30003.001.
  • NEON (National Ecological Observatory Network). 2023. “Elevation - LiDAR (DP3.30024.001).” RELEASE-2023. Dataset accessed from on August 11, 2023. https://data.neonscience.org/data-products/DP3.30024.001.
  • NEON (National Ecological Observatory Network). 2023. “Vegetation structure (DP1.10098.001).” RELEASE-2023. Dataset accessed from on August 11, 2023. https://data.neonscience.org/data-products/DP1.10098.001.
  • Ni-Meister, W., A. Rojas, and S. Lee. 2022. “Direct Use of Large-Footprint Lidar Waveforms to Estimate Aboveground Biomass.” Remote Sensing of Environment 280:113147. https://doi.org/10.1016/j.rse.2022.113147.
  • Ni, W., Z. Zhang, and G. Sun. 2021. “Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Aboveground Biomass Over Mountainous Areas.” Journal of Remote Sensing 2021:1–17. https://doi.org/10.34133/2021/9805364.
  • Nophea, S., and F. E. Putz. 2009. “Critical Need for New Definitions of ‘Forest’ and ‘Forest Degradation’ in Global Climate Change Agreements.” Conservation Letters 2 (5): 226–232. https://doi.org/10.1111/j.1755-263x.2009.00067.x.
  • Pascual, A., J. Guerra-Hernández, J. Armston, D. M. Minor, L. I. Duncanson, P. B. May, J. R. Kellner, and R. Dubayah. 2023. “Assessing the Performance of Nasa’s GEDI L4A Footprint Aboveground Biomass Density Models Using National Forest Inventory and Airborne Laser Scanning Data in Mediterranean Forest Ecosystems.” Forest Ecology and Management 538:120975. https://doi.org/10.1016/j.foreco.2023.120975.
  • Patterson, P. L., S. P. Healey, G. Ståhl, S. Saarela, S. Holm, H.-E. Andersen, R. O. Dubayah, et al. 2019. “Statistical Properties of Hybrid Estimators Proposed for GEDI—Nasa’s Global Ecosystem Dynamics Investigation.” Environmental Research Letters 14 (6): 065007. https://doi.org/10.1088/1748-9326/ab18df.
  • Plummer, S., P. Lecomte, and M. Doherty. 2017. “The ESA Climate Change Initiative (CCI): A European Contribution to the Generation of the Global Climate Observing System.” Remote Sensing of Environment 203:2–8. https://doi.org/10.1016/j.rse.2017.07.014.
  • Popescu, S. C., K. Zhao, A. Neuenschwander, and C. Lin. 2011. “Satellite Lidar Vs. Small Footprint Airborne Lidar: Comparing the Accuracy of Aboveground Biomass Estimates and Forest Structure Metrics at Footprint Level.” Remote Sensing of Environment 115 (11): 2786–2797. https://doi.org/10.1016/j.rse.2011.01.026.
  • Potapov, P., X. Li, A. Hernandez-Serna, A. Tyukavina, M. C. Hansen, A. Kommareddy, A. Pickens, et al. 2021. “Mapping Global Forest Canopy Height Through Integration of GEDI and Landsat Data.” Remote Sensing of Environment 253:112165. https://doi.org/10.1016/j.rse.2020.112165.
  • Premoli, A., and P. Tavella. 1993. “Revisited Three-Cornered Hat Method for Estimating Frequency Standard Instability.” IEEE Transactions on Instrumentation and Measurement 42:7–13. https://doi.org/10.1109/19.206671.
  • Qi, W., S. Saarela, J. Armston, G. Ståhl, and R. Dubayah. 2019. “Forest Biomass Estimation Over Three Distinct Forest Types Using TanDEM-X InSar Data and Simulated GEDI Lidar Data.” Remote Sensing of Environment 232:111283. https://doi.org/10.1016/j.rse.2019.111283.
  • Quirós, E., M. E. Polo, and L. Fragoso-Campón. 2021. “GEDI Elevation Accuracy Assessment: A Case Study of Southwest Spain.” IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 14:5285–5299. https://doi.org/10.1109/JSTARS.2021.3080711.
  • Rodda, S. R., R. R. Nidamanuri, R. Fararoda, T. Mayamanikandan, and G. Rajashekar. 2023. “Evaluation of Height Metrics and Above-Ground Biomass Density from GEDI and ICESat-2 Over Indian Tropical Dry Forests Using Airborne LiDar Data.” The Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-023-01693-1.
  • Rodríguez-Veiga, P., S. Quegan, J. Carreiras, H. J. Persson, J. E. S. Fransson, A. Hoscilo, D. Ziółkowski, et al. 2019. “Forest Biomass Retrieval Approaches from Earth Observation in Different Biomes.” International Journal of Applied Earth Observation and Geoinformation 77:53–68. https://doi.org/10.1016/j.jag.2018.12.008.
  • Saarela, S., S. Holm, S. P. Healey, H.-E. Andersen, H. Petersson, W. Prentius, P. L. Patterson, E. Næsset, T. G. Gregoire, and G. Ståhl. 2018. “Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data.” Remote Sensing 10 (11): 1832. https://doi.org/10.3390/rs10111832.
  • Saarela, S., S. Holm, S. P. Healey, P. L. Patterson, Z. Yang, H.-E. Andersen, R. O. Dubayah, et al. 2022. “Comparing Frameworks for Biomass Prediction for the Global Ecosystem Dynamics Investigation.” Remote Sensing of Environment 278:113074. https://doi.org/10.1016/j.rse.2022.113074.
  • Santoro, M., O. Cartus, N. Carvalhais, D. M. A. Rozendaal, V. Avitabile, A. Araza, S. de Bruin, et al. 2021. “The Global Forest Above-Ground Biomass Pool for 2010 Estimated from High-Resolution Satellite Observations.” Earth System Science Data 13 (8): 3927–3950. https://doi.org/10.5194/essd-13-3927-2021.
  • Shendryk, Y. 2022. “Fusing GEDI with Earth Observation Data for Large Area Aboveground Biomass Mapping.” International Journal of Applied Earth Observation and Geoinformation 115:103108. https://doi.org/10.1016/j.jag.2022.103108.
  • Silva, C. A., L. Duncanson, S. Hancock, A. Neuenschwander, N. Thomas, M. Hofton, L. Fatoyinbo, et al. 2021. “Fusing Simulated GEDI, ICESat-2 and NISAR Data for Regional Aboveground Biomass Mapping.” Remote Sensing of Environment 253:112234. https://doi.org/10.1016/j.rse.2020.112234.
  • Sprinkle, W., and J. Klepac. 2015. “Models of Utah Juniper and Two-Needle Pinyon Biomass for One Site in Southwest Utah.” Forest Science 61 (1): 162–168. https://doi.org/10.5849/forsci.12-541.
  • Thurner, M., C. Beer, M. Santoro, N. Carvalhais, T. Wutzler, D. Schepaschenko, A. Shvidenko, et al. 2014. “Carbon Stock and Density of Northern Boreal and Temperate Forests.” Global Ecology & Biogeography 23 (3): 297–310. https://doi.org/10.1111/geb.12125.
  • Tsui, O. W., N. C. Coops, M. A. Wulder, and P. L. Marshall. 2013. “Integrating Airborne LiDar and Space-Borne Radar via Multivariate Kriging to Estimate Above-Ground Biomass.” Remote Sensing of Environment 139:340–352. https://doi.org/10.1016/j.rse.2013.08.012.
  • Vaglio Laurin, G., Q. Chen, J. A. Lindsell, D. A. Coomes, F. D. Frate, L. Guerriero, F. Pirotti, and R. Valentini. 2014. “Above Ground Biomass Estimation in an African Tropical Forest with Lidar and Hyperspectral Data.” Isprs Journal of Photogrammetry & Remote Sensing 89:49–58. https://doi.org/10.1016/j.isprsjprs.2014.01.001.
  • Wang, C., A. J. Elmore, I. Numata, M. A. Cochrane, L. Shaogang, J. Huang, Y. Zhao, and Y. Li. 2022. “Factors Affecting Relative Height and Ground Elevation Estimations of GEDI Among Forest Types Across the Conterminous USA.” GIScience & Remote Sensing 59 (1): 975–999. https://doi.org/10.1080/15481603.2022.2085354.
  • Weinstein, B. G., S. Marconi, M. Aubry-Kientz, G. Vincent, H. Senyondo, and E. P. White. 2020. “DeepForest: A Python Package for RGB Deep Learning Tree Crown Delineation.” Methods in Ecology and Evolution 11 (12): 1743–1751. https://doi.org/10.1111/2041-210X.13472.
  • Weinstein, B. G., S. Marconi, S. A. Bohlman, A. Zare, and E. P. White. 2020. “Cross-Site Learning in Deep Learning RGB Tree Crown Detection.” Ecological Informatics 56:101061. https://doi.org/10.1016/j.ecoinf.2020.101061.
  • Weinstein, B. G., S. Marconi, S. Bohlman, A. Zare, and E. White. 2019. “Individual Tree-Crown Detection in RGB Imagery Using Semi-Supervised Deep Learning Neural Networks.” Remote Sensing 11 (11): 1309. https://doi.org/10.3390/rs11111309.
  • Wilson, B. T., C. W. Woodall, and D. M. Griffith. 2013. “Imputing Forest Carbon Stock Estimates from Inventory Plots to a Nationally Continuous Coverage.” Carbon Balance and Management 8 (1): 1. https://doi.org/10.1186/1750-0680-8-1.
  • Wulder, M. A., J. C. White, R. F. Nelson, E. Næsset, H. O. Ørka, N. C. Coops, T. Hilker, C. W. Bater, and T. Gobakken. 2012. “Lidar Sampling for Large-Area Forest Characterization: A Review.” Remote Sensing of Environment 121:196–209. https://doi.org/10.1016/j.rse.2012.02.001.
  • Yang, L., S. Liang, and Y. Zhang. 2020. “A New Method for Generating a Global Forest Aboveground Biomass Map from Multiple High-Level Satellite Products and Ancillary Information.” IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 13:2587–2597. https://doi.org/10.1109/JSTARS.2020.2987951.
  • Zhang, Y., S. Liang, and L. Yang. 2019. “A Review of Regional and Global Gridded Forest Biomass Datasets.” Remote Sensing 11 (23): 2744. https://doi.org/10.3390/rs11232744.
  • Zhou, X., Y. Hao, L. Di, X. Wang, C. Chen, Y. Chen, G. Nagy, and T. Jancso. 2023. “Improving GEDI Forest Canopy Height Products by Considering the Stand Age Factor Derived from Time-Series Remote Sensing Images: A Case Study in Fujian, China.” Remote Sensing 15 (2): 467. https://doi.org/10.3390/rs15020467.
  • Zhou, T., and S. Popescu. 2019. “Waveformlidar: An R Package for Waveform LiDar Processing and Analysis.” Remote Sensing 11 (21): 2552. https://doi.org/10.3390/rs11212552.
  • Zolkos, S. G., S. J. Goetz, and R. Dubayah. 2013. “A Meta-Analysis of Terrestrial Aboveground Biomass Estimation Using Lidar Remote Sensing.” Remote Sensing of Environment 128:289–298. https://doi.org/10.1016/j.rse.2012.10.017.