373
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wildfire susceptibility mapping by incorporating damage proxy maps, differenced normalized burn Ratio, and deep learning algorithms based on sentinel-1/2 data: a case study on Maui Island, Hawaii

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2353982 | Received 01 Dec 2023, Accepted 07 May 2024, Published online: 14 May 2024

References

  • Abujayyab, S. K. M., M. M. Kassem, A. A. Khan, R. Wazirali, M. Coşkun, E. Taşoǧlu, A. Öztürk, F. Toprak, and Z. M. Yaseen. 2022. “Wildfire Susceptibility Mapping Using Five Boosting Machine Learning Algorithms: The Case Study of the Mediterranean Region of Turkey.” Genetics Research 2022:1–22. https://doi.org/10.1155/2022/3959150.
  • Acharya, T. D., I. T. Yang, and D. H. Lee. 2017. “GIS-Based Landslide Susceptibility Mapping of Bhotang, Nepal Using Frequency Ratio and Statistical Index Methods.” Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 35 (5): 357–364. https://doi.org/10.7848/ksgpc.2017.35.5.357.
  • Al-Abadi, A. M., H. R. Pourghasemi, S. Shahid, and H. B. Ghalib. 2017. “Spatial Mapping of Groundwater Potential Using Entropy Weighted Linear Aggregate Novel Approach and GIS.” Arabian Journal for Science and Engineering 42 (3): 1185–1199. https://doi.org/10.1007/s13369-016-2374-1.
  • Ban, Y., P. Zhang, A. Nascetti, A. R. Bevington, and M. A. Wulder. 2020. “Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning.” Scientific Reports 10 (1): 1–15. https://doi.org/10.1038/s41598-019-56967-x.
  • Bjånes, A., R. De La Fuente, and P. Mena. 2021. “A Deep Learning Ensemble Model for Wildfire Susceptibility Mapping.” Ecological Informatics 65 (May): 101397. https://doi.org/10.1016/j.ecoinf.2021.101397.
  • Böhner, J., and O. Antonić. 2009. “Land-Surface Parameters Specific to Topo-Climatology.” Developments in Soil Science 33 (C): 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1.
  • Bustillo Sánchez, M., M. Tonini, A. Mapelli, and P. Fiorucci. 2021. “Spatial Assessment of Wildfires Susceptibility in Santa Cruz (Bolivia) Using Random Forest.” Geosciences (Switzerland) 11 (5): 1–23. https://doi.org/10.3390/geosciences11050224.
  • Cai, Y. F., H. Zhang, Z. Feng, and S. Z. Shen. 2021. “Intensive Wildfire Associated with Volcanism Promoted the Vegetation Changeover in Southwest China During the Permian−triassic Transition.” Frontiers in Earth Science 9 (March): 1–15. https://doi.org/10.3389/feart.2021.615841.
  • Chen, W., S. Zhang, R. Li, and H. Shahabi. 2018. “Performance Evaluation of the GIS-Based Data Mining Techniques of Best-First Decision Tree, Random Forest, and naïve Bayes Tree for Landslide Susceptibility Modeling.” Science of the Total Environment 644:1006–1018. https://doi.org/10.1016/j.scitotenv.2018.06.389.
  • Chuvieco, E., M. L. Pettinari, N. Koutsias, M. Forkel, S. Hantson, and M. Turco. 2021. “Human and Climate Drivers of Global Biomass Burning Variability.” Science of the Total Environment 779:779. https://doi.org/10.1016/j.scitotenv.2021.146361.
  • Dupuy, J. L., H. Fargeon, N. Martin-StPaul, F. Pimont, J. Ruffault, M. Guijarro, C. Hernando, J. Madrigal, and P. Fernandes. 2020. “Climate Change Impact on Future Wildfire Danger and Activity in Southern Europe: A Review.” Annals of Forest Science 77 (2). https://doi.org/10.1007/s13595-020-00933-5.
  • Fadhillah, M. F., W. L. Hakim, M. Panahi, F. Rezaie, C. W. Lee, and S. Lee. 2022. “Mapping of Landslide Potential in Pyeongchang-Gun, South Korea, Using Machine Learning Meta-Based Optimization Algorithms.” The Egyptian Journal of Remote Sensing & Space Science 25 (2): 463–472. https://doi.org/10.1016/j.ejrs.2022.03.008.
  • Feng, J., X. Niu, J. Zhang, and J. H. Wang. 2022. “Gene Selection and Classification of ScRNA-Seq Data Combining Information Gain Ratio and Genetic Algorithm with Dynamic Crossover.” Wireless Communications and Mobile Computing 2022:1–16. https://doi.org/10.1155/2022/9639304.
  • Frazier, A. G., J. L. Deenik, N. D. Fujii, G. R. Funderburk, T. W. Giambelluca, C. P. Giardina, D. A. Helweg, et al. 2019. “Managing effects of drought in Hawaiʻi and U.S.-affiliated Pacific Islands.” Effects of Drought on Forests and Rangelands in the United States: Translating Science into Management Responses, edited by J. M. Vose, D. L. Peterson, C. H. Luce, and T. Patel-Weynand, 95–121. https://www.fs.usda.gov/research/treesearch/59164.
  • Gholamnia, K., T. G. Nachappa, O. Ghorbanzadeh, and T. Blaschke. 2020. “Comparisons of Diverse Machine Learning Approaches for Wildfire Susceptibility Mapping.” Symmetry 12 (4): 1–20. https://doi.org/10.3390/SYM12040604.
  • Giambelluca, T. W., X. Shuai, M. L. Barnes, R. J. Alliss, R. J. Longman, T. Miura, Q. Chen, et al. 2023. “Evapotranspiration of Hawai‘i. Final Report Submitted to the U.S.” In Army Corps of Engineers—Honolulu District, and the Commission on Water Resource Management, State of Hawai‘I. http://climate.geography.hawaii.edu/.
  • Hadiwijaya, B., P. E. Isabelle, D. F. Nadeau, and S. Pepin. 2021. “Observations of Canopy Storage Capacity and Wet Canopy Evaporation in a Humid Boreal Forest.” Hydrological Processes 35 (2): 1–19. https://doi.org/10.1002/hyp.14021.
  • Hakim, W. L., F. Rezaie, A. S. Nur, M. Panahi, K. Khosravi, C. W. Lee, and S. Lee. 2022. “Convolutional Neural Network (CNN) with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon, South Korea.” Journal of Environmental Management 305 (December 2021): 114367. https://doi.org/10.1016/j.jenvman.2021.114367.
  • Han, J., A. S. Nur, M. Syifa, M. Ha, C. W. Lee, and K. Y. Lee. 2021. “Improvement of Earthquake Risk Awareness and Seismic Literacy of Korean Citizens Through Earthquake Vulnerability Map from the 2017 Pohang Earthquake, South Korea.” Remote Sensing 13 (7): 1365. https://doi.org/10.3390/rs13071365.
  • Hawaiʻi Climate Data Portal. 2023. “Change Hawaii: Harnessing the Data Revolution for Island Resilience. The National Science Foundation OIA #2149133 and Hawaii EpscoR- RII Track-1.” https://www.hawaii.edu/climate-data-portal/data-portal/.
  • Hawaiʻi State Office of Planning and Sustainable Development. 2023. “Hawaii Statewide GIS Program.” https://planning.hawaii.gov/gis/.
  • Heidari, F. B., and R. Arfania. 2022. “Wildfire Susceptibility Mapping Using NBR Index and Frequency Ratio Model.” Geoconservation Research 5 (1): 240–260. https://doi.org/10.30486/gcr.2022.1961153.1107.
  • Hislop, S., S. Jones, M. Soto-Berelov, A. Skidmore, A. Haywood, and T. H. Nguyen. 2018. “Using Landsat Spectral Indices in Time-Series to Assess Wildfire Disturbance and Recovery.” Remote Sensing 10 (3): 1–17. https://doi.org/10.3390/rs10030460.
  • Iban, M. C., and A. Sekertekin. 2022. “Machine Learning Based Wildfire Susceptibility Mapping Using Remotely Sensed Fire Data and GIS: A Case Study of Adana and Mersin Provinces, Turkey.” Ecological Informatics 69:101647. https://doi.org/10.1016/j.ecoinf.2022.101647.
  • Jaafari, A., D. M. Gholami, and E. K. Zenner. 2017. “A Bayesian Modeling of Wildfire Probability in the Zagros Mountains, Iran.” Ecological Informatics 39 (2016): 32–44. https://doi.org/10.1016/j.ecoinf.2017.03.003.
  • Kadavi, P. R., C. W. Lee, and S. Lee. 2018. “Application of Ensemble-Based Machine Learning Models to Landslide Susceptibility Mapping.” Remote Sensing 10 (8): 1–18. https://doi.org/10.3390/rs10081252.
  • Kavzoglu, T., A. Teke, and E. O. Yilmaz. 2021. “Shared Blocks-Based Ensemble Deep Learning for Shallow Landslide Susceptibility Mapping.” Remote Sensing 13 (23): 4776. https://doi.org/10.3390/rs13234776.
  • Khosravi, K., M. Panahi, A. Golkarian, S. D. Keesstra, P. M. Saco, D. T. Bui, and S. Lee. 2020. “Convolutional Neural Network Approach for Spatial Prediction of Flood Hazard at National Scale of Iran.” Journal of Hydrology 591 (March): 125552. https://doi.org/10.1016/j.jhydrol.2020.125552.
  • Krawchuk, M. A., M. A. Moritz, M. A. Parisien, J. Van Dorn, K. Hayhoe, and J. Chave. 2009. “Global Pyrogeography: The Current and Future Distribution of Wildfire.” Public Library of Science ONE 4 (4): e5102. https://doi.org/10.1371/journal.pone.0005102.
  • Lee, S., and M. Kim. 2020. “Construction of Topographic/Hydrologic Data Using DEM and Its Service.” Geo Data 2 (2): 36–44. https://doi.org/10.22761/dj2020.2.2.006.
  • Lee, S., and F. Rezaie. 2021. “Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea.” Proceedings of the National Institute of Ecology of the Republic of Korea 2 (1): 1–4.
  • Lee, S., and J. A. Talib. 2005. “Probabilistic Landslide Susceptibility and Factor Effect Analysis.” Environmental Geology 47 (7): 982–990. https://doi.org/10.1007/s00254-005-1228-z.
  • Liu, Y., S. Goodrick, and W. Heilman. 2014. “Wildland Fire Emissions, Carbon, and Climate: Wildfire-Climate Interactions.” Forest Ecology and Management 317:80–96. https://doi.org/10.1016/j.foreco.2013.02.020.
  • Liu, P., Y. Liu, X. Guo, W. Zhao, H. Wu, and W. Xu. 2023. “Burned Area Detection and Mapping Using Time Series Sentinel-2 Multispectral Images.” Remote Sensing of Environment 296 (January): 113753. https://doi.org/10.1016/j.rse.2023.113753.
  • Marris, E. 2023. “Hawaii Wildfires: Did Scientists Expect Maui to Burn?” Nature 620 (7975): 708–709. https://doi.org/10.1038/d41586-023-02571-z.
  • Muhammad, K., J. Ahmad, and S. W. Baik. 2018. “Early Fire Detection Using Convolutional Neural Networks During Surveillance for Effective Disaster Management.” Neurocomputing 288:30–42. https://doi.org/10.1016/j.neucom.2017.04.083.
  • Narayanaraj, G., and M. C. Wimberly. 2012. “Influences of Forest Roads on the Spatial Patterns of Human- and Lightning-Caused Wildfire Ignitions.” Applied Geography 32 (2): 878–888. https://doi.org/10.1016/j.apgeog.2011.09.004.
  • Nemni, E., J. Bullock, S. Belabbes, and L. Bromley. 2020. “Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery.” Remote Sensing 12 (16): 1–30. https://doi.org/10.3390/RS12162532.
  • Nhongo, E. J. S., D. C. Fontana, L. A. Guasselli, and C. Bremm. 2019. “Probabilistic Modelling of Wildfire Occurrence Based on Logistic Regression, Niassa Reserve, Mozambique.” Geomatics, Natural Hazards and Risk 10 (1): 1772–1792. https://doi.org/10.1080/19475705.2019.1615559.
  • Nur, A. S., Y. J. Kim, and C. W. Lee. 2022. “Creation of Wildfire Susceptibility Maps in Plumas National Forest Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization Approaches.” Remote Sensing 14 (17): 4416. https://doi.org/10.3390/rs14174416.
  • Nur, A. S., Y. J. Kim, J. Lee, and C. W. Lee. 2023. “Spatial Prediction of Wildfire Susceptibility Using Hybrid Machine Learning Models Based on Support Vector Regression in Sydney, Australia.” Remote Sensing 15 (3): 760. https://doi.org/10.3390/rs15030760.
  • Oliveira, S., J. M. C. Pereira, J. San-Miguel-Ayanz, and L. Lourenço. 2014. “Exploring the Spatial Patterns of Fire Density in Southern Europe Using Geographically Weighted Regression.” Applied Geography 51:143–157. https://doi.org/10.1016/j.apgeog.2014.04.002.
  • Panahi, M., N. Sadhasivam, H. R. Pourghasemi, F. Rezaie, and S. Lee. 2020. “Spatial Prediction of Groundwater Potential Mapping Based on Convolutional Neural Network (CNN) and Support Vector Regression (SVR).” Journal of Hydrology 588 (April): 125033. https://doi.org/10.1016/j.jhydrol.2020.125033.
  • Papathoma-Köhle, M., M. Schlögl, C. Garlichs, M. Diakakis, S. Mavroulis, and S. Fuchs. 2022. “A Wildfire Vulnerability Index for Buildings.” Scientific Reports 12 (1): 1–15. https://doi.org/10.1038/s41598-022-10479-3.
  • Park, I., and S. Lee. 2014. “Spatial Prediction of Landslide Susceptibility Using a Decision Tree Approach: A Case Study of the Pyeongchang Area, Korea.” International Journal of Remote Sensing 35 (16): 6089–6112. https://doi.org/10.1080/01431161.2014.943326.
  • Park, S. J., C. W. Lee, S. Lee, and M. J. Lee. 2018. “Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea.” Remote Sensing 10 (10): 1545. https://doi.org/10.3390/rs10101545.
  • Pielke, R. A. 2005. “Land Use and Climate Change.” Science 310 (5754): 1625–1626. https://doi.org/10.1126/science.1120529.
  • Piralilou, S. T., G. Einali, O. Ghorbanzadeh, T. G. Nachappa, K. Gholamnia, T. Blaschke, and P. Ghamisi. 2022. “A Google Earth Engine Approach for Wildfire Susceptibility Prediction Fusion with Remote Sensing Data of Different Spatial Resolutions.” Remote Sensing 14 (3): 1–26. https://doi.org/10.3390/rs14030672.
  • Pourghasemi, H. R., and M. Beheshtirad. 2015. “Assessment of a Data-Driven Evidential Belief Function Model and GIS for Groundwater Potential Mapping in the Koohrang Watershed, Iran.” Geocarto International 30 (6): 662–685. https://doi.org/10.1080/10106049.2014.966161.
  • Preisler, H. K., and A. L. Westerling. 2007. “Statistical Model for Forecasting Monthly Large Wildfire Events in Western United States.” Journal of Applied Meteorology and Climatology 46 (7): 1020–1030. https://doi.org/10.1175/JAM2513.1.
  • Savsar, M. 2014. “Fire Station Location Analysis in a Metropolitan Area.” International Journal of Industrial and Systems Engineering 16 (3): 365–381. https://doi.org/10.1504/IJISE.2014.060134.
  • Sayad, Y. O., H. Mousannif, and H. Al Moatassime. 2019. “Predictive Modeling of Wildfires: A New Dataset and Machine Learning Approach.” Fire Safety Journal 104 (January): 130–146. https://doi.org/10.1016/j.firesaf.2019.01.006.
  • Schroeder, W., E. Prins, L. Giglio, I. Csiszar, C. Schmidt, J. Morisette, and D. Morton. 2008. “Validation of GOES and MODIS Active Fire Detection Products Using ASTER and ETM+ Data.” Remote Sensing of Environment 112 (5): 2711–2726. https://doi.org/10.1016/j.rse.2008.01.005.
  • Shaik, R. U., L. Giovanni, and L. Fusilli. 2022. “Dynamic Wildfire Fuel Mapping Using Sentinel-2 and Prisma Hyperspectral Imagery.” International Geoscience and Remote Sensing Symposium (IGARSS): 5973–5976. July. https://doi.org/10.1109/IGARSS46834.2022.9883095.
  • Shakesby, R. A. 2011. “Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions.” Earth-Science Reviews 105 (3–4): 71–100. https://doi.org/10.1016/j.earscirev.2011.01.001.
  • Shmuel, A., and E. Heifetz. 2022. “Global Wildfire Susceptibility Mapping Based on Machine Learning Models.” Forests 13 (7): 1050. https://doi.org/10.3390/f13071050.
  • Shmuel, A., and E. Heifetz. 2023. “Developing Novel Machine-Learning-Based Fire Weather Indices.” Machine Learning: Science and Technology 4 (1): 015029. https://doi.org/10.1088/2632-2153/acc008.
  • Spracklen, D. V., L. J. Mickley, J. A. Logan, R. C. Hudman, R. Yevich, M. D. Flannigan, and A. L. Westerling. 2009. “Impacts of Climate Change from 2000 to 2050 on Wildfire Activity and Carbonaceous Aerosol Concentrations in the Western United States.” Journal of Geophysical Research 114 (D20): 1–17. https://doi.org/10.1029/2008jd010966.
  • Storey, M. A., O. F. Price, J. J. Sharples, and R. A. Bradstock. 2020. “Drivers of Long-Distance Spotting During Wildfires in South-Eastern Australia.” International Journal of Wildland Fire 29 (6): 459–472. https://doi.org/10.1071/WF19124.
  • Sulova, A., and J. J. Arsanjani. 2021. “Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine.” Remote Sensing 13 (1): 1–23. https://doi.org/10.3390/rs13010010.
  • Tariq, A., H. Shu, A. S. Gagnon, Q. Li, F. Mumtaz, A. Hysa, M. A. Siddique, and I. Munir. 2021. “Assessing Burned Areas in Wildfires and Prescribed Fires with Spectral Indices and Sar Images in the Margalla Hills of Pakistan.” Forests 12 (10): 1371. https://doi.org/10.3390/f12101371.
  • Tasie, N. N., C. Israel-Cookey, and L. Banyie. 2018. “The Effect of Relative Humidity on the Solar Radiation Intensity in Port Harcourt, Nigeria.” International Journal of Research 5 (21): 128–136. https://pen2print.org/index.php/ijr/.
  • Tay, C. W. J., S. H. Yun, S. T. Chin, A. Bhardwaj, J. Jung, and E. M. Hill. 2020. “Rapid Flood and Damage Mapping Using Synthetic Aperture Radar in Response to Typhoon Hagibis, Japan.” Scientific Data 7 (1): 1–9. https://doi.org/10.1038/s41597-020-0443-5.
  • Tien, D., Q. Bui, Q. Nguyen, B. Pradhan, H. Nampak, and P. T. Trinh. 2017. “A Hybrid Artificial Intelligence Approach Using GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at a Tropical Area.” Agricultural and Forest Meteorology 233:32–44. https://doi.org/10.1016/j.agrformet.2016.11.002.
  • Tin, T. C., K. L. Chiew, S. C. Phang, S. N. Sze, and P. S. Tan. 2019. “Incoming Work-In-Progress Prediction in Semiconductor Fabrication Foundry Using Long Short-Term Memory.” Computational Intelligence and Neuroscience 2019:1–16. https://doi.org/10.1155/2019/8729367.
  • Tonini, M., M. D’andrea, G. Biondi, S. D. Esposti, A. Trucchia, and P. Fiorucci. 2020. “A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy.” Geosciences (Switzerland) 10 (3): 1–18. https://doi.org/10.3390/geosciences10030105.
  • Trauernicht, C., E. Pickett, C. P. Giardina, C. M. Litton, S. Cordell, and A. Beavers. 2015. “The Contemporary Scale and Context of Wildfire in Hawaiʻi.” Pacific Science 69 (4): 427–444. https://doi.org/10.2984/69.4.1.
  • Verde, J. C., and J. L. Zêzere. 2010. “Assessment and Validation of Wildfire Susceptibility and Hazard in Portugal.” Natural Hazards & Earth System Science 10 (3): 485–497. https://doi.org/10.5194/nhess-10-485-2010.
  • Xu, Q., A. L. R. Westerling, A. Notohamiprodjo, C. Wiedinmyer, J. J. Picotte, S. A. Parks, M. D. Hurteau, et al. 2022. “Wildfire Burn Severity and Emissions Inventory: An Example Implementation Over California.” Environmental Research Letters 17 (8): 085008. https://doi.org/10.1088/1748-9326/ac80d0.
  • Yang, H., Z. Pan, and Q. Tao. 2017. “Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.” Computational Intelligence and Neuroscience 2017:1–9. https://doi.org/10.1155/2017/9478952.
  • Ying, L., Z. Shen, M. Yang, and S. Piao. 2019. “Wildfire Detection Probability of MODIS Fire Products Under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records.” Remote Sensing 11 (24): 3031. https://doi.org/10.3390/rs11243031.
  • Yun, S. H., K. Hudnut, S. Owen, F. Webb, M. Simons, P. Sacco, E. Gurrola, et al. 2015. “Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO-Skymed and ALOS-2 Satellites.” Seismological Research Letters 86 (6): 1549–1556. https://doi.org/10.1785/0220150152.
  • Zhang, C., I. Sargent, X. Pan, A. Gardiner, J. Hare, and P. M. Atkinson. 2018. “VPRS-Based Regional Decision Fusion of CNN and MRF Classifications for Very Fine Resolution Remotely Sensed Images.” IEEE Transactions on Geoscience and Remote Sensing 56 (8): 4507–4521. https://doi.org/10.1109/TGRS.2018.2822783.
  • Zhang, G., M. Wang, and K. Lie. 2021. “Deep Neural Networks for Global Wildfire Susceptibility Modelling.” Ecological Indicators 127:107735. https://doi.org/10.1016/j.ecolind.2021.107735.
  • Zhang, G., M. Wang, and K. Liu. 2019. “Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China.” International Journal of Disaster Risk Science 10 (3): 386–403. https://doi.org/10.1007/s13753-019-00233-1.
  • Zhang Y., J. Wei, M. Duan, Y. Kang, Q. He, H. Wu, and Z. Lu. 2022. Coherent pixel selection using a dual-channel 1-D CNN for time series InSAR analysis. International Journal of Applied Earth Observation and Geoinformation, 112: 102927. https://doi.org/10.1016/j.jag.2022.102927.
  • Zhang, X., F. Wu, and Z. Li. 2021. “Application of Convolutional Neural Network to Traditional Data.” Expert Systems with Applications 168 (February): 114185. https://doi.org/10.1016/j.eswa.2020.114185.